Patents by Inventor Barton Lane

Barton Lane has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8847159
    Abstract: An ion energy analyzer for determining an ion energy distribution of a plasma and comprising an entrance grid, a selection grid, and an ion collector. The entrance grid includes a first plurality of openings dimensioned to be less than a Debye length for the plasma. The ion collector is coupled to the entrance grid via a first voltage source. The selection grid is positioned between the entrance grid and the ion collector and is coupled to the entrance grid via a second voltage source. An ion current meter is coupled to the ion collector to measure an ion flux onto the ion collector and transmit a signal related thereto.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: September 30, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Lee Chen, Barton Lane, Merritt Funk, Jianping Zhao, Radha Sundararajan
  • Publication number: 20140262040
    Abstract: A plasma-tuning rod configured for use with a microwave processing system. The waveguide includes a first dielectric portion having a first outer diameter. A second dielectric portion, with a second outer diameter greater than the first outer diameter surrounds the first dielectric portion, and may be coaxial therewith. In some embodiments of the present invention, a dielectric constant of the first dielectric portion may be equal to or greater than a dielectric constant of the second dielectric portion.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventors: Jianping Zhao, Peter L. G. Ventzek, Lee Chen, Barton Lane, Merritt Funk, Radha Sundararajan, Iwao Toshihiko, Zhiying Chen
  • Patent number: 8816281
    Abstract: A process by which an ion energy analyzer is manufactured includes processing a first substrate to form an entrance grid having a first channel and a first plurality of openings extending therethrough. A second substrate is processed to form a selection grid having a second channel therein and a second plurality of openings extending therethrough. A third substrate is processed to form an ion collector having a third channel therein. The entrance grid is operably coupled to, and electrically isolated from, the selection grid, which is, in turn, operably coupled to, and electrically isolated from, the ion collector.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: August 26, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Merritt Funk, Lee Chen, Barton Lane, Jianping Zhao, Radha Sundararajan
  • Patent number: 8501499
    Abstract: The invention provides a method of processing a wafer using Ion Energy (IE)-related multilayer process sequences and Ion Energy Controlled Multi-Input/Multi-Output (IEC-MIMO) models and libraries that can include one or more measurement procedures, one or more IEC-etch sequences, and one or more Ion Energy Optimized (IEO) etch procedures. The IEC-MIMO process control uses dynamically interacting behavioral modeling between multiple layers and/or multiple IEC etch sequences. The multiple layers and/or the multiple IEC etch sequence can be associated with the creation of lines, trenches, vias, spacers, contacts, and gate structures that can be created using IEO etch procedures.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: August 6, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Radha Sundararajan, Merritt Funk, Lee Chen, Barton Lane
  • Patent number: 8393197
    Abstract: Embodiments of the present invention employ measurement of argon as the means to detect the presence of an atmospheric leak in a processing chamber. Argon detected inside the process chamber is conclusive evidence of a leak. Furthermore, the amount of detected argon provides information on the rate of air entering through the leak. In one embodiment, leak detection takes place in the main plasma inside the processing chamber. In another embodiment, leak detection takes place in the self-contained plasma generated in a remote plasma sensor. Additional measurements can be performed, such as measuring the amount of oxygen, and/or the presence of moisture to help in detecting and quantifying outgassing from the processing chamber.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: March 12, 2013
    Assignee: Pivotal Systems Corporation
    Inventors: Joseph R. Monkowski, Barton Lane
  • Publication number: 20120248310
    Abstract: An ion energy analyzer for determining an ion energy distribution of a plasma and comprising an entrance grid, a selection grid, and an ion collector. The entrance grid includes a first plurality of openings dimensioned to be less than a Debye length for the plasma. The ion collector is coupled to the entrance grid via a first voltage source. The selection grid is positioned between the entrance grid and the ion collector and is coupled to the entrance grid via a second voltage source. An ion current meter is coupled to the ion collector to measure an ion flux onto the ion collector and transmit a signal related thereto.
    Type: Application
    Filed: March 28, 2012
    Publication date: October 4, 2012
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Lee Chen, Barton Lane, Merritt Funk, Jianping Zhao, Radha Sundararajan
  • Publication number: 20120252141
    Abstract: The invention provides a method of processing a wafer using Ion Energy (IE)-related multilayer process sequences and Ion Energy Controlled Multi-Input/Multi-Output (IEC-MIMO) models and libraries that can include one or more measurement procedures, one or more IEC-etch sequences, and one or more Ion Energy Optimized (IEO) etch procedures. The IEC-MIMO process control uses dynamically interacting behavioral modeling between multiple layers and/or multiple IEC etch sequences. The multiple layers and/or the multiple IEC etch sequence can be associated with the creation of lines, trenches, vias, spacers, contacts, and gate structures that can be created using IEO etch procedures.
    Type: Application
    Filed: March 28, 2011
    Publication date: October 4, 2012
    Applicant: Tokyo Electron Limited
    Inventors: Radha Sundararajan, Merritt Funk, Lee Chen, Barton Lane
  • Publication number: 20120248311
    Abstract: A process by which an ion energy analyzer is manufactured includes processing a first substrate to form an entrance grid having a first channel and a first plurality of openings extending therethrough. A second substrate is processed to form a selection grid having a second channel therein and a second plurality of openings extending therethrough. A third substrate is processed to form an ion collector having a third channel therein. The entrance grid is operably coupled to, and electrically isolated from, the selection grid, which is, in turn, operably coupled to, and electrically isolated from, the ion collector.
    Type: Application
    Filed: March 28, 2012
    Publication date: October 4, 2012
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Merritt Funk, Lee Chen, Barton Lane, Jianping Zhao, Radha Sundararajan
  • Publication number: 20120248322
    Abstract: A method of generating a signal representing with an ion energy analyzer for use in determining an ion energy distribution of a plasma. The ion energy analyzer, used for determining an ion energy distribution of a plasma, includes a first grid and a second grid that is spaced away from and electrically isolated from the first grid. The first grid forms a first surface of the ion energy analyzer and is positioned to be exposed to the plasma. The first grid includes a first plurality of openings, which are dimensioned to be less than a Debye length for the plasma. A voltage source and an ion current meter are operably coupled to the second grid, the latter of which is configured to measure an ion flux onto the ion collector and to transmit a signal that represents the measured ion flux. The method includes selectively and variably biasing the second grid relative to the first grid.
    Type: Application
    Filed: March 28, 2012
    Publication date: October 4, 2012
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Merritt Funk, Lee Chen, Barton Lane, Jianping Zhao, Radha Sundararajan
  • Patent number: 8237928
    Abstract: Embodiments of the present invention relate to the analysis of the components of one or more gases, for example a gas mixture sampled from a semiconductor manufacturing process such as plasma etching or plasma enhanced chemical vapor deposition (PECVD). Particular embodiments provide sufficient power to a plasma of the sample, to dissociate a large number of the molecules and molecular fragments into individual atoms. With sufficient power (typically a power density of between 3-40 W/cm3) delivered into the plasma, most of the emission peaks result from emission of individual atoms, thereby creating spectra conducive to simplifying the identification of the chemical composition of the gases under investigation. Such accurate identification of components of the gas may allow for the precise determination of the stage of the process being performed, and in particular for detection of process endpoint.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: August 7, 2012
    Assignee: Pivotal Systems Corporation
    Inventors: Joseph R. Monkowski, Barton Lane
  • Publication number: 20110177625
    Abstract: Embodiments of the present invention relate to the analysis of the components of one or more gases, for example a gas mixture sampled from a semiconductor manufacturing process such as plasma etching or plasma enhanced chemical vapor deposition (PECVD). Particular embodiments provide sufficient power to a plasma of the sample, to dissociate a large number of the molecules and molecular fragments into individual atoms. With sufficient power (typically a power density of between 3-40 W/cm3) delivered into the plasma, most of the emission peaks result from emission of individual atoms, thereby creating spectra conducive to simplifying the identification of the chemical composition of the gases under investigation. Such accurate identification of components of the gas may allow for the precise determination of the stage of the process being performed, and in particular for detection of process endpoint.
    Type: Application
    Filed: March 30, 2011
    Publication date: July 21, 2011
    Inventors: Joseph R. Monkowski, Barton Lane
  • Patent number: 7940395
    Abstract: Embodiments of the present invention relate to the analysis of the components of one or more gases, for example a gas mixture sampled from a semiconductor manufacturing process such as plasma etching or plasma enhanced chemical vapor deposition (PECVD). Particular embodiments provide sufficient power to a plasma of the sample, to dissociate a large number of the molecules and molecular fragments into individual atoms. With sufficient power (typically a power density of between 3-40 W/cm3) delivered into the plasma, most of the emission peaks result from emission of individual atoms, thereby creating spectra conducive to simplifying the identification of the chemical composition of the gases under investigation. Such accurate identification of components of the gas may allow for the precise determination of the stage of the process being performed, and in particular for detection of process endpoint.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: May 10, 2011
    Assignee: Pivotal Systems Corporation
    Inventors: Joseph R. Monkowski, Barton Lane
  • Patent number: 7871830
    Abstract: A method for controlling the plasma etching of semiconductor wafers determines the impedance of a plasma chamber using values representing voltage, current, and the phase angle between them, as provided by a sensor. All or less than all of the data during a first time period may be used to calculate a model. During a second time period, real time data is used to calculate a version of the instant impedance of the chamber. This version of impendence is compared to a time-projected version of the model. The method determines that etching should be stopped when the received data deviates from the extrapolated model by a certain amount. In some embodiments a rolling average is used in the second time period, the rolling average compared to the model to determine the end point condition.
    Type: Grant
    Filed: January 18, 2006
    Date of Patent: January 18, 2011
    Assignee: Pivotal Systems Corporation
    Inventors: Sumer S. Johal, Barton Lane, Georges J. Gorin, Sylvia G. J. P. Spruytte, Herve C. Kieffel
  • Patent number: 7757541
    Abstract: An embodiment of a method in accordance with the present invention to determine the flow rate of a second gas relative to a first gas, comprises, setting a flow of a first gas to a known level, taking a first measurement of the first gas with a measurement technique sensitive to a concentration of the first gas, and establishing a flow of a second gas mixed with the first gas. A second measurement of the first gas is taken with a measurement technique that is sensitive to the concentration of the first gas, and the flow of the second gas is determined by a calculation involving a difference between the first measurement and the second measurement. In alternative embodiments, the first measurement may be taken of a flow of two or more gases combined, with the second measurement taken with one of the gases removed from the mixture. Certain embodiments of methods of the present invention may be employed in sequence in order to determine flow rates of more than two gases.
    Type: Grant
    Filed: September 13, 2007
    Date of Patent: July 20, 2010
    Assignee: Pivotal Systems Corporation
    Inventors: Joseph R. Monkowski, Barton Lane
  • Patent number: 7695984
    Abstract: Method and system for detecting endpoint for a plasma etch process are provided. In accordance with one embodiment, the method provides a semiconductor substrate having a film to be processed thereon. The film is processed in a plasma environment during a time period to provide for device structures. Information associated with the plasma process is collected. The information is characterized by a first signal intensity. Information on a change in the first signal intensity is extracted. The change in the first signal intensity has a second signal intensity. The change in signal intensity at the second signal intensity is associated to an endpoint of processing the film in the plasma environment. The second signal intensity may be about 0.25% and less of the first signal intensity.
    Type: Grant
    Filed: April 20, 2006
    Date of Patent: April 13, 2010
    Assignee: Pivotal Systems Corporation
    Inventors: Joseph R Monkowski, Barton Lane
  • Publication number: 20100018293
    Abstract: Embodiments of the present invention employ measurement of argon as the means to detect the presence of an atmospheric leak in a processing chamber. Argon detected inside the process chamber is conclusive evidence of a leak. Furthermore, the amount of detected argon provides information on the rate of air entering through the leak. In one embodiment, leak detection takes place in the main plasma inside the processing chamber. In another embodiment, leak detection takes place in the self-contained plasma generated in a remote plasma sensor. Additional measurements can be performed, such as measuring the amount of oxygen, and/or the presence of moisture to help in detecting and quantifying outgassing from the processing chamber.
    Type: Application
    Filed: July 24, 2009
    Publication date: January 28, 2010
    Applicant: PIVOTAL SYSTEMS CORPORATION
    Inventors: Joseph R. Monkowski, Barton Lane
  • Publication number: 20090180113
    Abstract: Embodiments of the present invention relate to the analysis of the components of one or more gases, for example a gas mixture sampled from a semiconductor manufacturing process such as plasma etching or plasma enhanced chemical vapor deposition (PECVD). Particular embodiments provide sufficient power to a plasma of the sample, to dissociate a large number of the molecules and molecular fragments into individual atoms. With sufficient power (typically a power density of between 3-40 W/cm3) delivered into the plasma, most of the emission peaks result from emission of individual atoms, thereby creating spectra conducive to simplifying the identification of the chemical composition of the gases under investigation. Such accurate identification of components of the gas may allow for the precise determination of the stage of the process being performed, and in particular for detection of process endpoint.
    Type: Application
    Filed: August 1, 2008
    Publication date: July 16, 2009
    Applicant: Pivotal Systems Corporation
    Inventors: Joseph R. Monkowski, Barton Lane
  • Publication number: 20060157446
    Abstract: A method for controlling the plasma etching of semiconductor wafers determines the impedance of a plasma chamber using values representing voltage, current, and the phase angle between them, as provided by a sensor. All or less than all of the data during a first time period may be used to calculate a model. During a second time period, real time data is used to calculate a version of the instant impedance of the chamber. This version of impendence is compared to a time-projected version of the model. The method determines that etching should be stopped when the received data deviates from the extrapolated model by a certain amount. In some embodiments a rolling average is used in the second time period, the rolling average compared to the model to determine the end point condition.
    Type: Application
    Filed: January 18, 2006
    Publication date: July 20, 2006
    Inventors: Sumer Johel, Barton Lane, Georges Gorin, Sylvia Spruytte, Herve Kieffel