Patents by Inventor Boris Kobrin

Boris Kobrin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9782917
    Abstract: Aspects of the present disclosure describe cylindrical molds that may be used to produce cylindrical masks for use in lithography. A structured porous layer may be deposited on an interior surface of a cylinder. A radiation-sensitive material may be deposited over the porous layer in order to fill pores formed in the layer. The radiation-sensitive material in the pores may be cured by exposing the cylinder with a light source. The uncured resist and porous layer may be removed, leaving behind posts on the cylinder's interior surface. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: October 10, 2017
    Assignee: METAMATERIAL TECHNOLOGIES USA, INC.
    Inventors: Boris Kobrin, Ian McMackin
  • Publication number: 20170243837
    Abstract: An article having a surface treated to provide a protective coating structure in accordance with the following method: vapor depositing a first layer on a substrate, wherein said first layer is a metal oxide adhesion layer selected from the group consisting of an oxide of a Group IIIA metal element, a Group IVB metal element, a Group VB metal element, and combinations thereof; vapor depositing a second layer upon said first layer, wherein said second layer includes a silicon-containing layer selected from the group consisting of silicon oxide, silicon nitride, and silicon oxynitride; and vapor depositing a third layer upon said second layer, wherein said third layer is a functional organic-comprising layer, wherein said functional organic-comprising layer is a SAM.
    Type: Application
    Filed: August 5, 2013
    Publication date: August 24, 2017
    Applicant: Applied Microstructures, Inc.
    Inventors: Boris Kobrin, Nikunj Dangaria, Romuald Nowak, Michael T. Grimes
  • Patent number: 9725805
    Abstract: A vapor phase deposition method and apparatus for the application of thin layers and coatings on substrates. The method and apparatus are useful in the fabrication of electronic devices, micro-electromechanical systems (MEMS), Bio-MEMS devices, micro and nano imprinting lithography, and microfluidic devices. The apparatus used to carry out the method provides for the addition of a precise amount of each of the reactants to be consumed in a single reaction step of the coating formation process. The apparatus provides for precise addition of quantities of different combinations of reactants during a single step or when there are a number of different individual steps in the coating formation process. The precise addition of each of the reactants in vapor form is metered into a predetermined set volume at a specified temperature to a specified pressure, to provide a highly accurate amount of reactant.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: August 8, 2017
    Assignee: SPTS Technologies Limited
    Inventors: Boris Kobrin, Romuald Nowak, Richard C. Yi, Jeffrey D. Chinn
  • Patent number: 9645504
    Abstract: Embodiments of the invention relate to methods and apparatus useful in the nanopatterning of large area substrates, where a rotatable mask is used to image a radiation-sensitive material. Typically the rotatable mask comprises a cylinder. The nanopatterning technique makes use of Near-Field photolithography, where the mask used to pattern the substrate is in contact or close proximity with the substrate. The Near-Field photolithography may make use of an elastomeric phase-shifting mask, or may employ surface plasmon technology, where a rotating cylinder surface comprises metal nano holes or nanoparticles.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: May 9, 2017
    Assignee: METAMATERIAL TECHNOLOGIES USA, INC.
    Inventor: Boris Kobrin
  • Publication number: 20170116808
    Abstract: Aspects of the present disclosure include an anti-counterfeiting pattern that is identifiable by sheet resistance mapping metrology, a method of fabricating such an anti-counterfeiting device, and a method of detecting such an anti-counterfeiting device by imaging the pattern with sheet resistance mapping metrology. This abstract is provided to comply with rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Application
    Filed: November 23, 2016
    Publication date: April 27, 2017
    Inventor: Boris Kobrin
  • Publication number: 20170028594
    Abstract: A cylindrical mask may be fabricated using a hollow casting cylinder and a mask cylinder. The casting cylinder has an inner diameter that is larger than the outer diameter of the mask cylinder. The casting and mask cylinders are coaxially assembled and a liquid polymer inserted in a space surrounding the mask cylinder between the inner surface of the casting cylinder and the outer surface of the mask cylinder. After curing the liquid polymer, the casting cylinder is removed. A surface of the cured polymer can be patterned. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Application
    Filed: August 12, 2016
    Publication date: February 2, 2017
    Inventors: Boris Kobrin, Oliver Seitz, Bruce Richardson, Ian McMackin, Mukti Aryal, Bryant Grigsby
  • Patent number: 9481112
    Abstract: Aspects of the present disclosure include a cylindrical master mold assembly having a cylindrical patterned component with a first diameter and a sacrificial casting component with a second diameter. The component with the smaller radius may be co-axially inserted into the interior of the component with the larger radius. Patterned features may be formed on the interior surface of the cylindrical patterned component that faces the sacrificial casting component. The sacrificial casting component may be removed once a cast polymer has been cured to allow the polymer to be released. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: November 1, 2016
    Assignee: METAMATERIAL TECHNOLOGIES USA, INC.
    Inventors: Boris Kobrin, Ian McMackin
  • Patent number: 9465296
    Abstract: Embodiments of the invention relate to methods and apparatus useful in the nanopatterning of large area substrates, where a movable nanostructured film is used to image a radiation-sensitive material. The nanopatterning technique makes use of Near-Field photolithography, where the nanostructured film used to modulate light intensity reaching radiation-sensitive layer. The Near-Field photolithography may make use of an elastomeric phase-shifting mask, or may employ surface plasmon technology, where a movable film comprises metal nano holes or nanoparticles.
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: October 11, 2016
    Assignee: Rolith, Inc.
    Inventor: Boris Kobrin
  • Patent number: 9244356
    Abstract: Embodiments of the present disclosure include a metal mesh structure and a method of fabrication thereof. The metal mesh structure includes a metal mesh formed on a substrate. The metal mesh is a 2D or 3D pattern of lines. The lines in the first and second set are characterized by a linewidth that is less than 2 microns. Such metal mesh structures are fabricated through rolling mask lithography. This abstract is provided to comply with rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Grant
    Filed: April 3, 2014
    Date of Patent: January 26, 2016
    Assignee: Rolith, Inc.
    Inventors: Boris Kobrin, Ian McMackin
  • Publication number: 20150336301
    Abstract: A cylindrical mask may be fabricated using a hollow casting cylinder and a mask cylinder. The casting cylinder has an inner diameter that is larger than the outer diameter of the mask cylinder. The casting and mask cylinders are coaxially assembled and a liquid polymer inserted in a space surrounding the mask cylinder between the inner surface of the casting cylinder and the outer surface of the mask cylinder. After curing the liquid polymer, the casting cylinder is removed. A surface of the cured polymer can be patterned. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Application
    Filed: October 22, 2014
    Publication date: November 26, 2015
    Inventors: Boris Kobrin, Oliver Seitz, Bruce Richardson, Ian McMackin, Mukti Aryal, Bryant Grigsby
  • Patent number: 9116430
    Abstract: In the proposed plasmonic nanolithography technique a transparent mask is brought into physical contact with a metal on a substrate that is coated with a photoresist. The mask is not made of metal or other material that supports surface plasmons. The metal layer is exposed to radiation of a characteristic vacuum wavelength through the mask and the photoresist or through the substrate. The mask features and the vacuum wavelength of the radiation are chosen so that the radiation excites surface plasmons at the interface between the metal and the photoresist. The excitation of surface plasmons allows for the exposure and generation of features which are well-below the free space diffraction limit and small compared to the size of the features in the mask.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: August 25, 2015
    Assignee: Rolith, Inc.
    Inventors: Boris Kobrin, Edward Barnard
  • Patent number: 9069244
    Abstract: Methods for fabricating nanopatterned cylindrical photomasks are disclosed. A master pattern having nanometer scale features may be formed on a master substrate. A layer of an elastomer material may be formed on a surface of a transparent cylinder. The master pattern may be transferred from the master to the layer of elastomer material on the surface of the transparent cylinder. Alternatively, a nanopatterned cylindrical photomask may be fabricated by forming a pattern having nanometer scale features on an elastomer substrate and laminating the patterned elastomer substrate to a surface of a cylinder. In another method, a layer of elastomer material may be formed on a surface of a transparent cylinder and a pattern having nanometer scale features may be formed on the elastomer material by a direct patterning process.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: June 30, 2015
    Assignee: Rolith, Inc.
    Inventor: Boris Kobrin
  • Publication number: 20150177619
    Abstract: In the proposed plasmonic nanolithography technique a transparent mask is brought into physical contact with a metal on a substrate that is coated with a photoresist. The mask is not made of metal or other material that supports surface plasmons. The metal layer is exposed to radiation of a characteristic vacuum wavelength through the mask and the photoresist or through the substrate. The mask features and the vacuum wavelength of the radiation are chosen so that the radiation excites surface plasmons at the interface between the metal and the photoresist. The excitation of surface plasmons allows for the exposure and generation of features which are well-below the free space diffraction limit and small compared to the size of the features in the mask.
    Type: Application
    Filed: March 28, 2014
    Publication date: June 25, 2015
    Inventors: Boris Kobrin, Edward Barnard
  • Publication number: 20150140215
    Abstract: The present invention is related to carbon-doped metal oxide films. A method of depositing a low friction metal oxide film on a substrate is provided, including: using an atomic layer deposition technique, wherein said metal oxide film is deposited using at least an organo-metallic precursor, and wherein said substrate is at a temperature of 150° C. or lower during deposition of said metal oxide film, whereby a carbon-doped metal oxide film is obtained. The carbon-doped metal oxide films provide a low coefficient of friction, for example ranging from about 0.05 to about 0.4. In addition, the carbon-doped metal oxide films provide anti-stiction properties, where the measured work of adhesion is less than 10 ?J/m2. In addition, the carbon-doped metal oxide films provide unexpectedly good water vapor transmission properties. The carbon content in the carbon-doped metal oxide films ranges from about 5 atomic % to about 20 atomic %.
    Type: Application
    Filed: November 12, 2014
    Publication date: May 21, 2015
    Inventors: Boris Kobrin, Romuald Nowak, Jeffrey D. Chinn
  • Patent number: 8987029
    Abstract: A method of protecting a substrate during fabrication of semiconductor, MEMS devices. The method includes application of a protective thin film which typically has a thickness ranging from 3 angstroms to about 1,000 angstroms, wherein precursor materials used to deposit the protective thin film are organic-based precursors which include at least one fluorine-comprising functional group at one end of a carbon back bone and at least one functional bonding group at the opposite end of a carbon backbone, and wherein the carbon backbone ranges in length from 4 carbons through about 12 carbons. In many applications at least a portion of the protective thin film is removed during fabrication of the devices.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: March 24, 2015
    Assignee: Applied Microstructures, Inc.
    Inventors: Jeffrey D. Chinn, Boris Kobrin, Romuald Nowak
  • Patent number: 8900695
    Abstract: The present invention is related to carbon-doped metal oxide films. The carbon-doped metal oxide films provide a low coefficient of friction, for example ranging from about 0.05 to about 0.4. In addition, the carbon-doped metal oxide films applied over a silicon substrate, for example, provide anti-stiction properties, where the measured work of adhesion for a MEMS device cantilever beam coated with the carbon-doped metal oxide film is less than 10 ?J/m2. In addition, the carbon-doped metal oxide films provide unexpectedly good water vapor transmission properties. The carbon content in the carbon-doped metal oxide films ranges from about 5 atomic % to about 20 atomic %.
    Type: Grant
    Filed: February 22, 2008
    Date of Patent: December 2, 2014
    Assignee: Applied Microstructures, Inc.
    Inventors: Boris Kobrin, Romuald Nowak, Jeffrey D. Chinn
  • Publication number: 20140234780
    Abstract: Embodiments of the present invention are directed to techniques for obtaining patterns of features. One set of techniques uses multiple-pass rolling mask lithography to obtain the desired feature pattern. Another technique uses a combination of rolling mask lithography and a self-aligned plasmonic mask lithography to obtain a desired feature pitch.
    Type: Application
    Filed: April 24, 2014
    Publication date: August 21, 2014
    Applicant: ROLITH, INC.
    Inventors: Boris Kobrin, Mark Brongersma, Edward Barnard
  • Publication number: 20140212533
    Abstract: Aspects of the present disclosure describe cylindrical molds that may be used to produce cylindrical masks for use in lithography. A structured porous layer may be deposited on an interior surface of a cylinder. A radiation-sensitive material may be deposited over the porous layer in order to fill pores formed in the layer. The radiation-sensitive material in the pores may be cured by exposing the cylinder with a light source. The uncured resist and porous layer may be removed, leaving behind posts on the cylinder's interior surface. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Application
    Filed: January 31, 2013
    Publication date: July 31, 2014
    Applicant: Rolith, Inc.
    Inventors: Boris Kobrin, Ian McMackin
  • Publication number: 20140212536
    Abstract: Aspects of the present disclosure include a cylindrical master mold assembly having a cylindrical patterned component with a first diameter and a sacrificial casting component with a second diameter. The component with the smaller radius may be co-axially inserted into the interior of the component with the larger radius. Patterned features may be formed on the interior surface of the cylindrical patterned component that faces the sacrificial casting component. The sacrificial casting component may be removed once a cast polymer has been cured to allow the polymer to be released. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Application
    Filed: January 31, 2013
    Publication date: July 31, 2014
    Applicant: Rolith, Inc.
    Inventors: Boris Kobrin, Ian McMackin
  • Publication number: 20140202986
    Abstract: Rolling mask lithography may be performed to expose selected portions of a radiation sensitive layer to a radiation pattern that leaves selected portions of a top surface of the radiation sensitive layer resistant to development by a developer and non-selected portions susceptible to development by the developer. A structure of the selected portions is then rendered resistant to an etch process. The radiation sensitive layer is then flood exposed to a second radiation that leaves the radiation sensitive layer resistant to development by the developer. The radiation sensitive layer is then selectively etched using the etch-resistant selected portions as an etch mask.
    Type: Application
    Filed: January 24, 2013
    Publication date: July 24, 2014
    Applicant: Rolith, Inc.
    Inventors: Alfred Renaldo, Boris Kobrin