Patents by Inventor Boris Kobrin

Boris Kobrin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140037920
    Abstract: A hard-to-dry-etch material may be patterned by forming a layer of dry-etchable material on a surface of the hard-to-dry etch substrate, and dry etching the dry-etchable material. The hard-to-dry etch substrate produces substantial quantities of non-volatile etch byproducts that redeposit when subject to the dry etching. The dry-etchable material has similar material properties to the hard-to-dry-etch substrate material is formed. The dry-etchable material is one that does not produce substantial quantities of non-volatile etch byproducts that redeposit when the dry-etchable material is subject to the dry etching. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Application
    Filed: August 1, 2012
    Publication date: February 6, 2014
    Applicant: Rolith, Inc.
    Inventor: Boris Kobrin
  • Publication number: 20130320510
    Abstract: An article having a surface treated to provide a protective coating structure in accordance with the following method: vapor depositing a first layer on a substrate, wherein said first layer is a metal oxide adhesion layer selected from the group consisting of an oxide of a Group IIIA metal element, a Group IVB metal element, a Group VB metal element, and combinations thereof; vapor depositing a second layer upon said first layer, wherein said second layer includes a silicon-containing layer selected from the group consisting of silicon oxide, silicon nitride, and silicon oxynitride; and vapor depositing a third layer upon said second layer, wherein said third layer is a functional organic-comprising layer, wherein said functional organic-comprising layer is a SAM.
    Type: Application
    Filed: August 5, 2013
    Publication date: December 5, 2013
    Applicant: Applied Microstructures, Inc.
    Inventors: Boris Kobrin, Nikunj Dangaria, Romuald Nowak, Michael T. Grimes
  • Publication number: 20130320509
    Abstract: A moisture barrier coating for protecting a substrate from moisture, comprises an inorganic layer disposed over the substrate, the inorganic layer comprising an oxide or nitride of an element selected from the group consisting of silicon, aluminum, titanium, zirconium, hafnium and combinations thereof; and an organic silicon-containing layer disposed over the inorganic layer.
    Type: Application
    Filed: August 5, 2013
    Publication date: December 5, 2013
    Applicant: Applied Microstructures, Inc.
    Inventors: Boris Kobrin, Nikunj Hirji Dangaria, Romuald Nowak, Michael T. Grimes
  • Patent number: 8584703
    Abstract: This invention provides composite plastic articles and methods of making them. The articles can be fluidic or microfluidic devices having fluidic conduits and, optionally, pneumatic conduits that regulate flow in the fluidic conduits. The articles comprise a first substrate coated with a layer of a material that comprises, or onto which have been introduced, reactive groups. For example, the substrate can be a plastic coated with an oxide or a siloxane onto which hydroxyl groups have been introduced. These articles are covalently bonded with other articles comprising reactive groups on their surfaces, for example, polysiloxanes treated to have silanol groups. Certain articles have specified locations on their surfaces that are not bonded to the other piece. For example, the coating can be removed from these locations before bonding. Such locations can be useful as functional elements of various devices, such as valve seats in valves of microfluidic devices.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: November 19, 2013
    Assignee: IntegenX Inc.
    Inventors: Boris Kobrin, Iuliu I. Blaga, William Nielsen, Shize D. Qi, Ezra Van Gelder
  • Patent number: 8545972
    Abstract: An improved vapor-phase deposition method and apparatus for the application of multilayered films/coatings on substrates is described. The method is used to deposit multilayered coatings where the thickness of an oxide-based layer in direct contact with a substrate is controlled as a function of the chemical composition of the substrate, whereby a subsequently deposited layer bonds better to the oxide-based layer. The improved method is used to deposit multilayered coatings where an oxide-based layer is deposited directly over a substrate and an organic-based layer is directly deposited over the oxide-based layer. Typically, a series of alternating layers of oxide-based layer and organic-based layer are applied.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: October 1, 2013
    Assignee: Applied Microstructures, Inc.
    Inventors: Boris Kobrin, Jeffrey D. Chinn, Romuald Nowak, Richard C. Yi
  • Publication number: 20130224636
    Abstract: Methods for fabricating nanopatterned cylindrical photomasks are disclosed. A master pattern having nanometer scale features may be formed on a master substrate. A layer of an elastomer material may be formed on a surface of a transparent cylinder. The master pattern may be transferred from the master to the layer of elastomer material on the surface of the transparent cylinder. Alternatively, a nanopatterned cylindrical photomask may be fabricated by forming a pattern having nanometer scale features on an elastomer substrate and laminating the patterned elastomer substrate to a surface of a cylinder. In another method, a layer of elastomer material may be formed on a surface of a transparent cylinder and a pattern having nanometer scale features may be formed on the elastomer material by a direct patterning process.
    Type: Application
    Filed: February 14, 2013
    Publication date: August 29, 2013
    Applicant: Rolith, Inc.
    Inventor: Boris Kobrin
  • Patent number: 8518633
    Abstract: Embodiments of the invention relate to methods and apparatus useful in the nanopatterning of large area substrates, where a rotatable mask is used to image a radiation-sensitive material. Typically the rotatable mask comprises a cylinder. The nanopatterning technique makes use of Near-Field photolithography, where the mask used to pattern the substrate is in contact or close proximity with the substrate. The Near-Field photolithography may make use of an elastomeric phase-shifting mask, or may employ surface plasmon technology, where a rotating cylinder surface comprises metal nano holes or nanoparticles.
    Type: Grant
    Filed: April 1, 2009
    Date of Patent: August 27, 2013
    Assignee: Rolith Inc.
    Inventors: Boris Kobrin, Boris Volf, Igor Landau
  • Publication number: 20130208251
    Abstract: Embodiments of the invention relate to methods and apparatus useful in the nanopatterning of large area substrates, where a rotatable mask is used to image a radiation-sensitive material. Typically the rotatable mask comprises a cylinder. The nanopatterning technique makes use of Near-Field photolithography, where the mask used to pattern the substrate is in contact or close proximity with the substrate. The Near-Field photolithography may make use of an elastomeric phase-shifting mask, or may employ surface plasmon technology, where a rotating cylinder surface comprises metal nano holes or nanoparticles.
    Type: Application
    Filed: April 1, 2009
    Publication date: August 15, 2013
    Applicant: ROLITH, INC
    Inventors: Boris Kobrin, Boris Volf, Igor Landau
  • Patent number: 8501277
    Abstract: A method of providing a durable protective coating structure which comprises at least three layers, and which is stable at temperatures in excess of 400° C., where the method includes vapor depositing a first layer deposited on a substrate, wherein the first layer is a metal oxide adhesion layer selected from the group consisting of an oxide of a Group IIIA metal element, a Group IVB metal element, a Group VB metal element, and combinations thereof; vapor depositing a second layer upon said first layer, wherein said second layer includes a silicon-containing layer selected from the group consisting of silicon oxide, silicon nitride, and silicon oxynitride; and vapor depositing a third layer upon said second layer, wherein said third layer is a functional organic-comprising layer. Numerous articles useful in electronics, MEMS, nanoimprinting lithography, and biotechnology applications can be fabricated using the method.
    Type: Grant
    Filed: May 5, 2008
    Date of Patent: August 6, 2013
    Assignee: Applied Microstructures, Inc.
    Inventors: Boris Kobrin, Dangaria Nikunji Hirji, Romuald Nowak, Michael T. Grimes
  • Patent number: 8425789
    Abstract: In anisotropic etching of the substrates, ultra-thin and conformable layers of materials can be used to passivate sidewalls of the etched features. Such a sidewall passivation layer may be a Self-assembled monolayer (SAM) material deposited in-situ etching process from a vapor phase. Alternatively, the sidewall passivation layer may be an inorganic-based material deposited using Atomic Layer Deposition (ALD) method. SAM or ALD s layer deposition can be carried out in a pulsing regime alternating with sputtering and/or etching processes using process gasses with or without plasma. Alternatively, SAM deposition is carried out continuously, while etch or sputtering turns on in a pulsing regime. Alternatively, SAM deposition and etch or sputtering may be carried out continuously.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: April 23, 2013
    Assignee: Rolith, Inc.
    Inventor: Boris Kobrin
  • Patent number: 8388908
    Abstract: This invention provides fluidic devices, in particular microfluidic devices, with diaphragm valves having low failure rates. Low failure rates are achieved by inhibiting sticking of the diaphragm to functional surfaces such as valve seats, valve chamber and fluidic channels and conduits. One way to implement this is to provide exposed surfaces facing the diaphragm, particularly valve seats, with a low energy material, such as a noble metal, a perfluorinated polymer, a self-assembled monolayer, hard diamond, diamond-like carbon or a metal oxide. In other embodiments, the valves are provided with ridges and the diaphragm is adhered to the fluidic or actuation layer with an adhesive material.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: March 5, 2013
    Assignee: IntegenX Inc.
    Inventors: Iuliu I. Blaga, Stevan B. Jovanovich, Boris Kobrin, Ezra Van Gelder
  • Patent number: 8334217
    Abstract: Embodiments of the invention relate to a method of functional materials deposition using a polymer template fabricated on a substrate. Such template forms an exposed and masked areas of the substrate material, and can be fabricated using polymer resists or Self-assembled monolayers. Deposition is performed using an applicator, which is fabricated in the shape of cylinder or cone made of soft elastomeric materials or laminated with soft elastomeric film. Functional materials, for example, metals, semiconductors, sol-gels, colloids of particles are deposited on the surface of applicator using liquid immersion, soaking, contact with wetted surfaces, vapor deposition or other techniques. Then wetted applicator is contacted the surface of the polymer template and rolled over it's surface. During this dynamic contact functional material is transferred selectively to the areas of the template. Patterning of functional material is achieved by lift-off of polymeric template after deposition.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: December 18, 2012
    Assignee: Rolith Inc.
    Inventor: Boris Kobrin
  • Patent number: 8323723
    Abstract: An intraocular lens with a hydrophilic polymer coating composition and method of preparing same are provided. Specifically, a composition suitable for reducing tackiness in intraocular lenses is provided wherein an acrylic intraocular lens is treated by vapor deposition with an alkoxy silyl terminated polyethylene glycol polymer composition.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: December 4, 2012
    Inventors: Michael D Lowery, Laurent Hoffmann, Boris Kobrin, Romuald Nowak, Jeffrey D Chinn, Richard C Yi
  • Patent number: 8318386
    Abstract: Embodiments of the invention relate to methods useful in the fabrication of nanostructured devices for optics, energy generation, displays, consumer electronics, life sciences and medicine, construction and decoration. Instead of nanostructuring using colloids of particles, special vacuum deposition methods, laser interference systems (holography), and other low-throughput limited surface area techniques, we suggest to use nanotemplate created by novel nanolithography method, “Rolling mask” lithography. This method allows fast and inexpensive fabrication of nanostructures on large areas of substrate materials in conveyor-type continuous process. Such nanotemplate is then used for selective deposition of functional materials. One of embodiments explains deposition of functional materials in the exposed and developed areas of the substrate. Another embodiment uses selective deposition of the functional material on top of such template.
    Type: Grant
    Filed: August 6, 2009
    Date of Patent: November 27, 2012
    Assignee: Rolith Inc.
    Inventor: Boris Kobrin
  • Publication number: 20120282554
    Abstract: Embodiments of the invention relate to methods and apparatus useful in the nanopatterning of large area substrates, where a rotatable mask is used to image a radiation-sensitive material. Typically the rotatable mask comprises a cylinder. The nanopatterning technique makes use of Near-Field photolithography, where the mask used to pattern the substrate is in contact or close proximity with the substrate. The Near-Field photolithography may make use of an elastomeric phase-shifting mask, or may employ surface plasmon technology, where a rotating cylinder surface comprises metal nano holes or nanoparticles.
    Type: Application
    Filed: July 19, 2012
    Publication date: November 8, 2012
    Applicant: Rolith, Inc.
    Inventors: Boris Kobrin, Ian McMackin
  • Publication number: 20120274004
    Abstract: Embodiments of the invention relate to methods and apparatus useful in the nanopatterning of large area substrates, where a movable nanostructured film is used to image a radiation-sensitive material. The nanopatterning technique makes use of Near-Field photolithography, where the nanostructured film used to modulate light intensity reaching radiation-sensitive layer. The Near-Field photolithography may make use of an elastomeric phase-shifting mask, or may employ surface plasmon technology, where a movable film comprises metal nano holes or nanoparticles.
    Type: Application
    Filed: July 11, 2012
    Publication date: November 1, 2012
    Applicant: Rolith, Inc.
    Inventor: Boris Kobrin
  • Patent number: 8298614
    Abstract: An improved vapor-phase deposition method and apparatus for the application of multilayered films/coatings on substrates is described. The method is used to deposit multilayered coatings where the thickness of an oxide-based layer in direct contact with a substrate is controlled as a function of the chemical composition of the substrate, whereby a subsequently deposited layer bonds better to the oxide-based layer. The improved method is used to deposit multilayered coatings where an oxide-based layer is deposited directly over a substrate and a SAM organic-based layer is directly deposited over the oxide-based layer. Typically a series of alternating layers of oxide-based layer and organic-based layer are applied.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: October 30, 2012
    Assignee: Applied MicroStructures, Inc.
    Inventors: Boris Kobrin, Jeffrey D. Chinn, Romuald Nowak, Richard C. Yi
  • Publication number: 20120224159
    Abstract: An apparatus to carry out patterning of a disk includes a rotatable mask having a cone shape and a nanopattern on an exterior surface of said mask and a radiation source configured to supply radiation of a wavelength of 436 nm or less from said nanopattern, while said nanopattern is in contact with a radiation-sensitive layer of material. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Application
    Filed: May 15, 2012
    Publication date: September 6, 2012
    Applicant: ROLITH, INC.
    Inventor: BORIS KOBRIN
  • Patent number: 8236379
    Abstract: The present invention is related to a chemical vapor deposition method of depositing layers of materials to provide super-hydrophilic surface properties, or super-hydrophobic surface properties, or combinations of such properties at various locations on a given surface. The invention also relates to electronic applications which make use of super-hydrophobic surface properties, and to biological applications which make use of super-hydrophilic surface properties.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: August 7, 2012
    Assignee: Applied Microstructures, Inc.
    Inventors: Boris Kobrin, Jeffrey D. Chin, Benigno A. Janeiro, Romuald Nowak
  • Publication number: 20120162629
    Abstract: Embodiments of the invention relate to methods and apparatus useful in the nanopatterning of large area substrates, where a rotatable mask is used to image a radiation-sensitive material. Typically the rotatable mask comprises a cylinder. The nanopatterning technique makes use of Near-Field photolithography, where the mask used to pattern the substrate is in contact or close proximity with the substrate. The Near-Field photolithography may make use of an elastomeric phase-shifting mask, or may employ surface plasmon technology, where a rotating cylinder surface comprises metal nano holes or nanoparticles.
    Type: Application
    Filed: March 9, 2012
    Publication date: June 28, 2012
    Applicant: Rolith, Inc.
    Inventor: Boris Kobrin