Patents by Inventor Brian T West

Brian T West has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220389566
    Abstract: Methods and apparatus for processing a substrate are provided herein. For example, a cooling apparatus for use with a substrate support of a processing chamber comprises a heat exchanger, a manifold assembly comprising a first input configured to connect to an output of the heat exchanger, a second input configured to connect to a first coolant supply configured to supply a first coolant, a first output configured to connect to the substrate support of the processing chamber, and a second output configured to connect to an input of the heat exchanger, a gas input configured to connect to a second coolant supply that is configured to supply a second coolant that is different from the first coolant to the substrate support, a first three-way valve connected between the first output of the manifold assembly and the substrate support and connected between the gas input and the substrate support, and a controller configured to control supplying one of the first coolant or the second coolant during operation.
    Type: Application
    Filed: June 3, 2021
    Publication date: December 8, 2022
    Inventors: Robert HARTWIG, Dinkesh HUDERI SOMANNA, Brian T. WEST
  • Patent number: 11469080
    Abstract: Embodiments of coolant guides for use in magnetron assemblies are provided herein. In some embodiments, a coolant guide for use in a magnetron assembly includes: a body having a guide channel extending through the body, wherein an upper opening of the guide channel corresponding with an upper surface of the body has a first size and a lower opening of the guide channel corresponding with a lower surface of the body has a second size greater than the first size, and wherein the body includes a first pair of outer sidewalls that are substantially parallel to each other and a second pair of outer sidewalls that are angled toward each other; and an upper lip extending away from an upper surface of the body.
    Type: Grant
    Filed: May 24, 2021
    Date of Patent: October 11, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Dinkesh Huderi Somanna, Brian T. West, Jeonghoon Oh
  • Patent number: 11251067
    Abstract: Implementations described herein provide a pedestal lift assembly for a plasma processing chamber and a method for using the same. The pedestal lift assembly has a platen configured to couple a shaft of a pedestal disposed in the plasma processing chamber. An absolute linear encoder is coupled to a fixed frame wherein the absolute linear encoder is configured to detect incremental movement of the platen. A lift rod is attached to the platen. A motor rotor encoder brake module (MRBEM) is coupled to the fixed frame and moveably coupled to the lift rod, the motor encoder brake module configured to move the lift rod in a first direction and a second direction, wherein the movement of the lift rod results in the platen traveling vertically relative to the fixed frame.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: February 15, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Brian T. West, Miroslav Gelo, Yan Rozenzon, Roger M. Johnson, Mark Covington, Soundarrajan Jembulingam, Simon Nicholas Binns, Vivek Vinit
  • Patent number: 11114289
    Abstract: Embodiments of the invention generally relate to an anode for a semiconductor processing chamber. More specifically, embodiments described herein relate to a process kit including a shield serving as an anode in a physical deposition chamber. The shield has a cylindrical band, the cylindrical band having a top and a bottom, the cylindrical band sized to encircle a sputtering surface of a sputtering target disposed adjacent the top and a substrate support disposed at the bottom, the cylindrical band having an interior surface. A texture is disposed on the interior surface. The texture has a plurality of features. A shaded area is disposed in the feature wherein the shaded area is not visible to the sputtering target. A small anode surface is disposed in the shaded area.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: September 7, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Michael S. Cox, Lara Hawrylchak, Brian T. West
  • Patent number: 11114285
    Abstract: Embodiments disclosed herein include an abatement system for abating compounds produced in semiconductor processes. The abatement system includes an exhaust cooling apparatus located downstream of a plasma source. The exhaust cooling apparatus includes at least one cooling plate a device for introducing turbulence to the exhaust flowing within the exhaust cooling apparatus. The device may be a plurality of fins, a cylinder with a curved top portion, or a diffuser with angled blades. The turbulent flow of the exhaust within the exhaust cooling apparatus causes particles to drop out of the exhaust, minimizing particles forming in equipment downstream of the exhaust cooling apparatus.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: September 7, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Michael S. Cox, Brian T. West, Roger M. Johnson, Yan Rozenzon, Dinkesh Somanna, Dustin W. Ho
  • Patent number: 11072852
    Abstract: Embodiments of the disclosure generally relate to a process kit including a shield serving as an anode in a physical deposition chamber. The shield has a cylindrical band, the cylindrical band having a top and a bottom, the cylindrical band sized to encircle a sputtering surface of a sputtering target disposed adjacent the top and a substrate support disposed at the bottom, the cylindrical band having an interior surface. A texture is disposed on the interior surface. The texture has a plurality of features. A film is provided on a portion of the features. The film includes a porosity of about 2% to about 3.5%.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: July 27, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Brian T. West, Lizhong Sun, William M. Lu
  • Patent number: 11056372
    Abstract: Embodiments described herein relate to a substrate support and techniques for controlling a temperature of the same. The substrate support includes a heating element and an over temperature switch disposed therein. The heating element heats the substrate support and a substrate disposed thereon. The over temperature switch controls a temperature of the heating element and the substrate support. The over temperature switch is operable to switch states in response to a temperature of the substrate support exceeding a predefined temperature.
    Type: Grant
    Filed: June 20, 2019
    Date of Patent: July 6, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Brian T. West, Soundarrajan Jembulingam, Dinkesh Huderi Somanna
  • Patent number: 11011356
    Abstract: Implementations of the present disclosure relate to a sputtering target for a sputtering chamber used to process a substrate. In one implementation, a sputtering target for a sputtering chamber is provided. The sputtering target comprises a sputtering plate with a backside surface having radially inner, middle and outer regions and an annular-shaped backing plate mounted to the sputtering plate. The backside surface has a plurality of circular grooves which are spaced apart from one another and at least one arcuate channel cutting through the circular grooves and extending from the radially inner region to the radially outer region of sputtering plate. The annular-shaped backing plate defines an open annulus exposing the backside surface of the sputtering plate.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: May 18, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Brian T. West, Michael S. Cox, Jeonghoon Oh
  • Patent number: 10930479
    Abstract: A process chamber includes a chamber body having a chamber lid assembly disposed thereon, one or more monitoring devices coupled to the chamber lid assembly, and one or more antennas disposed adjacent to the chamber lid assembly that are in communication with the one or more monitoring devices.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: February 23, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Simon Nicholas Binns, Brian T. West, Ronald Vern Schauer, Roger M. Johnson, Michael S. Cox
  • Patent number: 10867776
    Abstract: A PVD chamber deposits a film with high thickness uniformity. The PVD chamber includes a coil of an electromagnetic that, when energized with direct current power, can modify plasma in an edge portion of the processing region of the PVD chamber. The coil is disposed within the vacuum-containing portion of the PVD chamber and outside a processing region of the PVD chamber.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: December 15, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Brian T. West, Michael S. Cox, Miroslav Gelo, Dinkesh Huderi Somanna
  • Publication number: 20200350195
    Abstract: Embodiments described herein relate to a substrate support and techniques for controlling a temperature of the same. The substrate support includes a heating element and an over temperature switch disposed therein. The heating element heats the substrate support and a substrate disposed thereon. The over temperature switch controls a temperature of the heating element and the substrate support. The over temperature switch is operable to switch states in response to a temperature of the substrate support exceeding a predefined temperature.
    Type: Application
    Filed: June 20, 2019
    Publication date: November 5, 2020
    Inventors: Brian T. WEST, Soundarrajan JEMBULINGAM, Dinkesh HUDERI SOMANNA
  • Publication number: 20200343126
    Abstract: Implementations described herein provide a pedestal lift assembly for a plasma processing chamber and a method for using the same. The pedestal lift assembly has a platen configured to couple a shaft of a pedestal disposed in the plasma processing chamber. An absolute linear encoder is coupled to a fixed frame wherein the absolute linear encoder is configured to detect incremental movement of the platen. A lift rod is attached to the platen. A motor rotor encoder brake module (MRBEM) is coupled to the fixed frame and moveably coupled to the lift rod, the motor encoder brake module configured to move the lift rod in a first direction and a second direction, wherein the movement of the lift rod results in the platen traveling vertically relative to the fixed frame.
    Type: Application
    Filed: April 26, 2019
    Publication date: October 29, 2020
    Inventors: Brian T. WEST, Miroslav GELO, Yan ROZENZON, Roger M. JOHNSON, Mark COVINGTON, Soundarrajan JEMBULINGAM, Simon Nicholas BINNS, Vivek VINIT
  • Patent number: 10781518
    Abstract: Embodiments of the disclosure include an electrostatic chuck assembly, a processing chamber and a method of maintaining a temperature of a substrate is provided. In one embodiment, an electrostatic chuck assembly is provided that includes an electrostatic chuck, a cooling plate and a gas box. The cooling plate includes a gas channel formed therein. The gas box is operable to control a flow of cooling gas through the gas channel.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: September 22, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Brian T. West, Manoj A. Gajendra, Soundarrajan Jembulingam
  • Publication number: 20200294778
    Abstract: Implementations of the present disclosure relate to a sputtering target for a sputtering chamber used to process a substrate. In one implementation, a sputtering target for a sputtering chamber is provided. The sputtering target comprises a sputtering plate with a backside surface having radially inner, middle and outer regions and an annular-shaped backing plate mounted to the sputtering plate. The backside surface has a plurality of circular grooves which are spaced apart from one another and at least one arcuate channel cutting through the circular grooves and extending from the radially inner region to the radially outer region of sputtering plate. The annular-shaped backing plate defines an open annulus exposing the backside surface of the sputtering plate.
    Type: Application
    Filed: June 2, 2020
    Publication date: September 17, 2020
    Inventors: Brian T. WEST, Michael S. COX, Jeonghoon OH
  • Patent number: 10714321
    Abstract: Implementations of the present disclosure relate to a sputtering target for a sputtering chamber used to process a substrate. In one implementation, a sputtering target for a sputtering chamber is provided. The sputtering target comprises a sputtering plate with a backside surface having radially inner, middle and outer regions and an annular-shaped backing plate mounted to the sputtering plate. The backside surface has a plurality of circular grooves which are spaced apart from one another and at least one arcuate channel cutting through the circular grooves and extending from the radially inner region to the radially outer region of sputtering plate. The annular-shaped backing plate defines an open annulus exposing the backside surface of the sputtering plate.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: July 14, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Brian T. West, Michael S. Cox, Jeonghoon Oh
  • Patent number: 10662520
    Abstract: A method for recycling a substrate process component of a processing chamber is provided. In one example, the recycling process includes retrieving a reference dimension for the substrate process component. The substrate process component includes a side wall having a bottom surface, an outer surface, a pre-defined wall thickness between the bottom surface and the outer surface, and a residue layer. The reference dimension corresponds to the pre-defined wall thickness. The recycling process includes machining the substrate process component with a mechanical cutting tool. The machining includes securing the substrate process component to a work piece holder and passing the mechanical cutting tool across the outer surface in a machining operation controlled by a controller to remove the residue layer. The controller uses the reference dimension to control the machining operation so that the substrate process component has the reference dimension after removal of the residue layer.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: May 26, 2020
    Assignee: Applied Materials, Inc.
    Inventor: Brian T. West
  • Publication number: 20200024725
    Abstract: Embodiments of the disclosure generally relate to a process kit including a shield serving as an anode in a physical deposition chamber. The shield has a cylindrical band, the cylindrical band having a top and a bottom, the cylindrical band sized to encircle a sputtering surface of a sputtering target disposed adjacent the top and a substrate support disposed at the bottom, the cylindrical band having an interior surface. A texture is disposed on the interior surface. The texture has a plurality of features. A film is provided on a portion of the features. The film includes a porosity of about 2% to about 3.5%.
    Type: Application
    Filed: June 28, 2019
    Publication date: January 23, 2020
    Inventors: Brian T. WEST, Lizhong SUN, William M. LU
  • Publication number: 20190348259
    Abstract: A PVD chamber deposits a film with high thickness uniformity. The PVD chamber includes a coil of an electromagnetic that, when energized with direct current power, can modify plasma in an edge portion of the processing region of the PVD chamber. The coil is disposed within the vacuum-containing portion of the PVD chamber and outside a processing region of the PVD chamber.
    Type: Application
    Filed: May 9, 2018
    Publication date: November 14, 2019
    Inventors: Brian T. WEST, Michael S. COX, Miroslav GELO, Dinkesh HUDERI SOMANNA
  • Publication number: 20190096643
    Abstract: A process chamber includes a chamber body having a chamber lid assembly disposed thereon, one or more monitoring devices coupled to the chamber lid assembly, and one or more antennas disposed adjacent to the chamber lid assembly that are in communication with the one or more monitoring devices.
    Type: Application
    Filed: November 28, 2018
    Publication date: March 28, 2019
    Inventors: Simon Nicholas BINNS, Brian T. WEST, Ronald Vern SCHAUER, Roger M. JOHNSON, Michael S. COX
  • Patent number: 10176973
    Abstract: Embodiments disclosed herein include a method for abating compounds produced in semiconductor processes. The method includes energizing an abating agent, forming a composition by reacting the energized abating agent with gases exiting a vacuum processing chamber, and flowing the composition through a plurality of holes formed in a cooling plate. By cooling the composition with the cooling plate, damages on the downstream pump are avoided.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: January 8, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Michael S. Cox, Rongping Wang, Brian T. West, Roger M. Johnson, Colin John Dickinson