Patents by Inventor Brian T West

Brian T West has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10176973
    Abstract: Embodiments disclosed herein include a method for abating compounds produced in semiconductor processes. The method includes energizing an abating agent, forming a composition by reacting the energized abating agent with gases exiting a vacuum processing chamber, and flowing the composition through a plurality of holes formed in a cooling plate. By cooling the composition with the cooling plate, damages on the downstream pump are avoided.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: January 8, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Michael S. Cox, Rongping Wang, Brian T. West, Roger M. Johnson, Colin John Dickinson
  • Patent number: 10153143
    Abstract: A process chamber includes a chamber body having a chamber lid assembly disposed thereon, one or more monitoring devices coupled to the chamber lid assembly, and one or more antennas disposed adjacent to the chamber lid assembly that are in communication with the one or more monitoring devices.
    Type: Grant
    Filed: February 16, 2015
    Date of Patent: December 11, 2018
    Assignee: Applied Materials, Inc.
    Inventors: Simon Nicholas Binns, Brian T. West, Ronald Vern Schauer, Roger M. Johnson, Michael S. Cox
  • Publication number: 20180342378
    Abstract: Implementations of the present disclosure relate to a sputtering target for a sputtering chamber used to process a substrate. In one implementation, a sputtering target for a sputtering chamber is provided. The sputtering target comprises a sputtering plate with a backside surface having radially inner, middle and outer regions and an annular-shaped backing plate mounted to the sputtering plate. The backside surface has a plurality of circular grooves which are spaced apart from one another and at least one arcuate channel cutting through the circular grooves and extending from the radially inner region to the radially outer region of sputtering plate. The annular-shaped backing plate defines an open annulus exposing the backside surface of the sputtering plate.
    Type: Application
    Filed: July 30, 2018
    Publication date: November 29, 2018
    Inventors: Brian T. WEST, Michael S. COX, Jeonghoon OH
  • Publication number: 20180281027
    Abstract: A method for recycling a substrate process component of a processing chamber is provided. In one example, the recycling process includes retrieving a reference dimension for the substrate process component. The substrate process component includes a side wall having a bottom surface, an outer surface, a pre-defined wall thickness between the bottom surface and the outer surface, and a residue layer. The reference dimension corresponds to the pre-defined wall thickness. The recycling process includes machining the substrate process component with a mechanical cutting tool. The machining includes securing the substrate process component to a work piece holder and passing the mechanical cutting tool across the outer surface in a machining operation controlled by a controller to remove the residue layer. The controller uses the reference dimension to control the machining operation so that the substrate process component has the reference dimension after removal of the residue layer.
    Type: Application
    Filed: March 29, 2017
    Publication date: October 4, 2018
    Inventor: Brian T. WEST
  • Patent number: 10049863
    Abstract: Implementations of the present disclosure relate to a sputtering target for a sputtering chamber used to process a substrate. In one implementation, a sputtering target for a sputtering chamber is provided. The sputtering target comprises a sputtering plate with a backside surface having radially inner, middle and outer regions and an annular-shaped backing plate mounted to the sputtering plate. The backside surface has a plurality of circular grooves which are spaced apart from one another and at least one arcuate channel cutting through the circular grooves and extending from the radially inner region to the radially outer region of sputtering plate. The annular-shaped backing plate defines an open annulus exposing the backside surface of the sputtering plate.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: August 14, 2018
    Assignee: Applied Materials, Inc.
    Inventors: Brian T. West, Michael S. Cox, Jeonghoon Oh
  • Publication number: 20180019108
    Abstract: Implementations of the present disclosure relate to a sputtering target for a sputtering chamber used to process a substrate. In one implementation, a sputtering target for a sputtering chamber is provided. The sputtering target comprises a sputtering plate with a backside surface having radially inner, middle and outer regions and an annular-shaped backing plate mounted to the sputtering plate. The backside surface has a plurality of circular grooves which are spaced apart from one another and at least one arcuate channel cutting through the circular grooves and extending from the radially inner region to the radially outer region of sputtering plate. The annular-shaped backing plate defines an open annulus exposing the backside surface of the sputtering plate.
    Type: Application
    Filed: September 26, 2017
    Publication date: January 18, 2018
    Inventors: Brian T. WEST, Michael S. COX, Jeonghoon OH
  • Publication number: 20170316924
    Abstract: Embodiments of the invention generally relate to an anode for a semiconductor processing chamber. More specifically, embodiments described herein relate to a process kit including a shield serving as an anode in a physical deposition chamber. The shield has a cylindrical band, the cylindrical band having a top and a bottom, the cylindrical band sized to encircle a sputtering surface of a sputtering target disposed adjacent the top and a substrate support disposed at the bottom, the cylindrical band having an interior surface. A texture is disposed on the interior surface. The texture has a plurality of features. A shaded area is disposed in the feature wherein the shaded area is not visible to the sputtering target. A small anode surface is disposed in the shaded area.
    Type: Application
    Filed: February 14, 2017
    Publication date: November 2, 2017
    Inventors: Michael S. COX, Lara HAWRYLCHAK, Brian T. WEST
  • Publication number: 20170301524
    Abstract: Embodiments disclosed herein include an abatement system for abating compounds produced in semiconductor processes. The abatement system includes an exhaust cooling apparatus located downstream of a plasma source. The exhaust cooling apparatus includes at least one cooling plate a device for introducing turbulence to the exhaust flowing within the exhaust cooling apparatus. The device may be a plurality of fins, a cylinder with a curved top portion, or a diffuser with angled blades. The turbulent flow of the exhaust within the exhaust cooling apparatus causes particles to drop out of the exhaust, minimizing particles forming in equipment downstream of the exhaust cooling apparatus.
    Type: Application
    Filed: April 13, 2017
    Publication date: October 19, 2017
    Inventors: Michael S. COX, Brian T. WEST, Roger M. JOHNSON, Yan ROZENZON, Dinkesh SOMANNA, Dustin W. HO
  • Patent number: 9779917
    Abstract: Embodiments of the present invention generally provide plasma etch process chamber improvements. An improved gas injection nozzle is provided for use at a central location of the lid of the chamber. The gas injection nozzle may be used in an existing plasma etch chamber and is configured to provide a series of conic gas flows across the surface of a substrate positioned within the chamber. In one embodiment, an improved exhaust kit for use in the plasma etch chamber is provided. The exhaust kit includes apparatus that may be used in an existing plasma etch chamber and is configured to provide annular flow of exhaust gases from the processing region of the chamber.
    Type: Grant
    Filed: September 9, 2014
    Date of Patent: October 3, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Stanley Detmar, Brian T. West, Ronald Vern Schauer
  • Patent number: 9779920
    Abstract: Implementations of the present disclosure relate to a sputtering target for a sputtering chamber used to process a substrate. In one implementation, a sputtering target for a sputtering chamber is provided. The sputtering target comprises a sputtering plate with a backside surface having radially inner, middle and outer regions and an annular-shaped backing plate mounted to the sputtering plate. The backside surface has a plurality of circular grooves which are spaced apart from one another and at least one arcuate channel cutting through the circular grooves and extending from the radially inner region to the radially outer region of sputtering plate. The annular-shaped backing plate defines an open annulus exposing the backside surface of the sputtering plate.
    Type: Grant
    Filed: August 11, 2014
    Date of Patent: October 3, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Brian T. West, Michael S. Cox, Jeonghoon Oh
  • Patent number: 9767990
    Abstract: Apparatus for treating a gas in a conduit of a substrate processing system are provided. In some embodiments, an apparatus for treating a gas in a conduit of a substrate processing system includes: a dielectric tube configured to be coupled to a conduit of a substrate processing system to allow a flow of gases through the dielectric tube, wherein the dielectric tube has a conical sidewall; and a radio frequency (RF) coil wound about an outer surface of the conical sidewall of the dielectric tube. In some embodiments, the RF coil is hollow and includes coolant fittings to couple the hollow RF coil to a coolant supply.
    Type: Grant
    Filed: June 21, 2016
    Date of Patent: September 19, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jibing Zeng, Brian T. West, Rongping Wang, Manoj A. Gajendra
  • Patent number: 9754771
    Abstract: Embodiments of the present invention generally provide a magnetron that is encapsulated by a material that is tolerant of heat and water. In one embodiment, the entire magnetron is encapsulated. In another embodiment, the magnetron includes magnetic pole pieces, and the magnetic pole pieces are not covered by the encapsulating material.
    Type: Grant
    Filed: July 23, 2014
    Date of Patent: September 5, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Brian T. West, Roger M. Johnson, Michael S. Cox
  • Publication number: 20170133208
    Abstract: Embodiments disclosed herein include a method for abating compounds produced in semiconductor processes. The method includes energizing an abating agent, forming a composition by reacting the energized abating agent with gases exiting a vacuum processing chamber, and flowing the composition through a plurality of holes formed in a cooling plate. By cooling the composition with the cooling plate, damages on the downstream pump are avoided.
    Type: Application
    Filed: January 20, 2017
    Publication date: May 11, 2017
    Inventors: Michael S. COX, Rongping WANG, Brian T. WEST, Roger M. JOHNSON, Colin John DICKINSON
  • Patent number: 9552967
    Abstract: Embodiments disclosed herein include an abatement system for abating compounds produced in semiconductor processes. The abatement system includes a plasma source that has a first plate and a second plate parallel to the first plate. An electrode is disposed between the first and second plates and an outer wall is disposed between the first and second plates surrounding the electrode. The plasma source has a first plurality of magnets disposed on the first plate and a second plurality of magnets disposed on the second plate. The magnetic field created by the first and second plurality of magnets is substantially perpendicular to the electric field created between the electrode and the outer wall. In this configuration, a dense plasma is created.
    Type: Grant
    Filed: January 13, 2016
    Date of Patent: January 24, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Michael S. Cox, Rongping Wang, Brian T. West, Roger M. Johnson, Colin John Dickinson
  • Patent number: 9543124
    Abstract: Embodiments disclosed herein include a plasma source for abating compounds produced in semiconductor processes. The plasma source has a first plate and a second plate parallel to the first plate. An electrode is disposed between the first and second plates and an outer wall is disposed between the first and second plates surrounding the cylindrical electrode. The plasma source has a first plurality of magnets disposed on the first plate and a second plurality of magnets disposed on the second plate. The magnetic field created by the first and second plurality of magnets is substantially perpendicular to the electric field created between the electrode and the outer wall. In this configuration, a dense plasma is created.
    Type: Grant
    Filed: December 31, 2015
    Date of Patent: January 10, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Michael S. Cox, Rongping Wang, Brian T. West, Roger M. Johnson, Colin John Dickinson
  • Publication number: 20160300692
    Abstract: Apparatus for treating a gas in a conduit of a substrate processing system are provided. In some embodiments, an apparatus for treating a gas in a conduit of a substrate processing system includes: a dielectric tube configured to be coupled to a conduit of a substrate processing system to allow a flow of gases through the dielectric tube, wherein the dielectric tube has a conical sidewall; and a radio frequency (RF) coil wound about an outer surface of the conical sidewall of the dielectric tube. In some embodiments, the RF coil is hollow and includes coolant fittings to couple the hollow RF coil to a coolant supply.
    Type: Application
    Filed: June 21, 2016
    Publication date: October 13, 2016
    Inventors: JIBING ZENG, BRIAN T. WEST, RONGPING WANG, MANOJ A. GAJENDRA
  • Patent number: 9378928
    Abstract: Apparatus for treating a gas in a conduit of a substrate processing system are provided. In some embodiments, an apparatus for treating a gas in a conduit of a substrate processing system includes: a dielectric tube to be coupled to a conduit of a substrate processing system to allow a flow of gases through the dielectric tube, wherein the dielectric tube has a conical sidewall; and an RF coil wound about an outer surface of the conical sidewall of the dielectric tube, the RF coil having a first end to provide an RF input to the RF coil, the first end of the RF coil disposed proximate a first end of the dielectric tube and a second end disposed proximate a second end of the dielectric tube. In some embodiments, the RF coil is hollow and includes coolant fittings to couple the hollow RF coil to a coolant supply.
    Type: Grant
    Filed: July 29, 2014
    Date of Patent: June 28, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jibing Zeng, Brian T. West, Rongping Wang, Manoj A. Gajendra
  • Publication number: 20160172226
    Abstract: Embodiments of the disclosure include an electrostatic chuck assembly, a processing chamber and a method of maintaining a temperature of a substrate is provided. In one embodiment, an electrostatic chuck assembly is provided that includes an electrostatic chuck, a cooling plate and a gas box. The cooling plate includes a gas channel formed therein. The gas box is operable to control a flow of cooling gas through the gas channel.
    Type: Application
    Filed: December 11, 2014
    Publication date: June 16, 2016
    Inventors: Brian T. WEST, Manoj A. GAJENDRA, Soundarrajan JEMBULINGAM
  • Publication number: 20160133442
    Abstract: Embodiments disclosed herein include an abatement system for abating compounds produced in semiconductor processes. The abatement system includes a plasma source that has a first plate and a second plate parallel to the first plate. An electrode is disposed between the first and second plates and an outer wall is disposed between the first and second plates surrounding the electrode. The plasma source has a first plurality of magnets disposed on the first plate and a second plurality of magnets disposed on the second plate. The magnetic field created by the first and second plurality of magnets is substantially perpendicular to the electric field created between the electrode and the outer wall. In this configuration, a dense plasma is created.
    Type: Application
    Filed: January 13, 2016
    Publication date: May 12, 2016
    Inventors: Michael S. COX, Rongping WANG, Brian T. WEST, Roger M. JOHNSON, Colin John DICKINSON
  • Publication number: 20160118226
    Abstract: Embodiments disclosed herein include a plasma source for abating compounds produced in semiconductor processes. The plasma source has a first plate and a second plate parallel to the first plate. An electrode is disposed between the first and second plates and an outer wall is disposed between the first and second plates surrounding the cylindrical electrode. The plasma source has a first plurality of magnets disposed on the first plate and a second plurality of magnets disposed on the second plate. The magnetic field created by the first and second plurality of magnets is substantially perpendicular to the electric field created between the electrode and the outer wall. In this configuration, a dense plasma is created.
    Type: Application
    Filed: December 31, 2015
    Publication date: April 28, 2016
    Inventors: Michael S. Cox, Rongping Wang, Brian T. West, Roger M. Johnson, Colin John Dickinson