Patents by Inventor Bruce B. Doris

Bruce B. Doris has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210091300
    Abstract: Magnetic structures including magnetic inductors and magnetic tunnel junction (MTJ)-containing structures that have tapered sidewalls are formed without using an ion beam etch (IBE). The magnetic structures are formed by providing a material stack of a dielectric capping layer and a sacrificial dielectric material layer above a lower interconnect level. First and second etching steps are performed to pattern the sacrificial dielectric material layer and the dielectric capping layer such that a patterned dielectric capping layer is provided with a tapered sidewall. After removing the sacrificial dielectric material layer, a magnetic material-containing stack is formed within the opening in the patterned dielectric capping layer and atop the patterned dielectric capping layer. A planarization process is then employed to pattern the magnetic-containing stack by removing the magnetic material-containing stack that is located atop the patterned dielectric capping layer.
    Type: Application
    Filed: September 19, 2019
    Publication date: March 25, 2021
    Inventors: Bruce B. Doris, Oscar van der Straten, Alexander Reznicek, Praneet Adusumilli
  • Patent number: 10957738
    Abstract: A semiconductor structure and fabrication method of forming a semiconductor structure. The structure is a MRAM element having a first conductive electrode embedded in a first interconnect dielectric material layer upon which a multi-layered magnetic tunnel junction (MTJ) memory element is formed in a magnetoresistive random access memory (MRAM) device area. The first conductive electrode includes a first end having a top surface of a first surface area and a second end having a bottom surface of a second surface area, the first surface area being smaller than the second surface area. The second end of the bottom electrode includes a barrier liner material including a metal fill material, and the first end of the bottom electrode is a pillar structure formed as a result of an etchback process in which the metal barrier liner is recessed relative to the metal fill material.
    Type: Grant
    Filed: April 3, 2019
    Date of Patent: March 23, 2021
    Assignee: International Business Machines Corporation
    Inventors: Pouya Hashemi, Bruce B. Doris, Chandrasekharan Kothandaraman, Nathan P. Marchack
  • Patent number: 10954544
    Abstract: Embodiments of the present invention are directed to a semiconductor device. A non-limiting example of the semiconductor device includes a semiconductor substrate. The semiconductor device also includes a plurality of metal nanopillars formed on the substrate. The semiconductor device also includes an amperometric sensor associated with one of the plurality of nanopillars, wherein the amperometric sensor is selective to an enzyme-active neurotransmitter. The semiconductor device also includes a resistivity sensor associated with a pair of nanopillars, wherein the resistivity sensor is selective to an analyte.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: March 23, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, Bruce B. Doris, Steven J. Holmes, Qinghuang Lin, Roy R. Yu
  • Patent number: 10943732
    Abstract: A magnetic material stack comprises a first dielectric layer, a first magnetic material layer on the first dielectric layer, at least a second dielectric layer on the first magnetic material layer and at least a second magnetic material layer on the second dielectric layer. One or more surfaces of the layers are smoothed to remove at least a portion of surface roughness on the respective layers.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: March 9, 2021
    Assignee: International Business Machines Corporation
    Inventors: Hariklia Deligianni, Bruce B. Doris, Eugene J. O'Sullivan, Naigang Wang
  • Patent number: 10944044
    Abstract: A memory structure is provided that avoids high resistance due to the galvanic effect. The high resistance is reduced and/or eliminated by providing a T-shaped bottom electrode structure of uniform construction (i.e., a single piece). The T-shaped bottom electrode structure includes a narrow base portion and a wider shelf portion. The shelf portion of the T-shaped bottom electrode structure has a planar topmost surface in which a MTJ pillar forms an interface with.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: March 9, 2021
    Assignee: International Business Machines Corporation
    Inventors: Pouya Hashemi, Bruce B. Doris, Eugene J. O'Sullivan, Michael F. Lofaro
  • Publication number: 20210066581
    Abstract: A dielectric material structure is formed laterally adjacent to a bottom portion of a bottom electrode metal-containing portion that extends upward from an electrically conductive structure that is embedded in an interconnect dielectric material layer. The physically exposed top portion of the bottom electrode metal-containing portion is then trimmed to provide a bottom electrode of unitary construction (i.e., a single piece) that has a lower portion having a first diameter and an upper portion that has a second diameter that is greater than the first diameter. The presence of the dielectric material structure prevents tilting and/or bowing of the resultant bottom electrode. Thus, a stable bottom electrode is provided.
    Type: Application
    Filed: August 29, 2019
    Publication date: March 4, 2021
    Inventors: Bruce B. Doris, Eileen A. Galligan, Nathan P. Marchack, Pouya Hashemi
  • Publication number: 20210066578
    Abstract: A multilayered bottom electrode for a magnetic tunnel junction (MTJ) containing device is provided that includes, from bottom to top, a base segment having a first diameter and composed of a remaining portion of a first bottom electrode metal-containing layer, a middle segment having a second diameter and composed of a remaining portion of a second bottom electrode metal-containing layer, and an upper segment having a third diameter and composed of a remaining portion of a third bottom electrode metal-containing layer, wherein the first diameter is greater than the second diameter, and the third diameter is equal to, or less than, the second diameter. The wider base segment of each multilayered bottom electrode prevents tilting and/or bowing of the resultant bottom electrode. Thus, a stable bottom electrode is provided.
    Type: Application
    Filed: August 27, 2019
    Publication date: March 4, 2021
    Inventors: Bruce B. Doris, Thitima Suwannasiri, Nathan P. Marchack, Pouya Hashemi
  • Patent number: 10937945
    Abstract: A magnetic tunnel junction (MTJ) containing device is provided that includes an undercut conductive pedestal structure having a concave sidewall positioned between a bottom electrode and a MTJ pillar. The geometric nature of such a conductive pedestal structure makes the pedestal structure unlikely to be resputtered and deposited on a sidewall of the MTJ pillar, especially the sidewall of the tunnel barrier of the MTJ pillar. Thus, electrical shorts caused by depositing resputtered conductive metal particles on the sidewall of the tunnel barrier of the MTJ pillar are substantially reduced.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: March 2, 2021
    Assignee: International Business Machines Corporation
    Inventors: Nathan P. Marchack, Bruce B. Doris
  • Publication number: 20210043827
    Abstract: A memory structure is provided that avoids high resistance due to the galvanic effect. The high resistance is reduced and/or eliminated by providing a T-shaped bottom electrode structure of uniform construction (i.e., a single piece). The T-shaped bottom electrode structure includes a narrow base portion and a wider shelf portion. The shelf portion of the T-shaped bottom electrode structure has a planar topmost surface in which a MTJ pillar forms an interface with.
    Type: Application
    Filed: August 7, 2019
    Publication date: February 11, 2021
    Inventors: Pouya Hashemi, Bruce B. Doris, Eugene J. O'Sullivan, Michael F. Lofaro
  • Patent number: 10903544
    Abstract: A high input impedance magnetic balun/transformer having a phase balancing network (PBN) and method of operating. The balun is fully configurable and trimmable post fabrication using independently adjustable resistive and reactive parts by changing the resistance of a programmed transistor, e.g., NMOS. Parallel connected legs each having a field effect transistors (FETs) that make up NMOS device alter the impedance at the balun output terminals. The ground terminal of a secondary winding or coil at an unbalanced, single-ended side is connected to a phase balancing network. The phase balancing network includes at least two parallel legs, each leg having a resistive element in the form of a transistor device and at least one leg including a capacitive element. The transistor device at a leg can be operated in a linear region to trim the resistance and capacitances at the unbalanced side in order to achieve proper phase balancing and amplitude matching.
    Type: Grant
    Filed: April 25, 2019
    Date of Patent: January 26, 2021
    Assignee: International Business Machines Corporation
    Inventors: Sudipto Chakraborty, Rajiv Joshi, Steven J. Holmes, Bruce B. Doris
  • Patent number: 10903417
    Abstract: A method of forming a magnetic tunnel junction (MTJ) containing device is provided in which a patterned sacrificial material is present atop a MTJ pillar that is located on a bottom electrode. A passivation material liner and a dielectric material portion laterally surround the MTJ pillar and the patterned sacrificial material. The patterned sacrificial material is removed from above the MTJ pillar and replaced with a top electrode. A seam is present in the top electrode. The method mitigates the possibility of depositing resputtered conductive metal particles on a sidewall of the MTJ pillar. Thus, improved device performance, in terms of a reduction in failure mode, can be obtained.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: January 26, 2021
    Assignee: International Business Machines Corporation
    Inventors: Pouya Hashemi, Alexander Reznicek, Nathan P. Marchack, Bruce B. Doris
  • Patent number: 10892364
    Abstract: A method of forming a fin structure that includes forming a plurality of fin structures from a bulk semiconductor substrate and forming a dielectric spacer on a sidewall of each fin structure in the plurality of fin structure. A semiconductor spacer is formed on a sidewall of the dielectric spacer. A dielectric fill is formed in the space between the adjacent fin structures. The semiconductor spacer and a portion of the fin structures that is present below a lower surface of the dielectric spacer are oxidized. Oxidizing a base portion of the fin structures produces a first strain and oxidizing the semiconductor spacer produces a second strain that is opposite the first strain.
    Type: Grant
    Filed: November 1, 2017
    Date of Patent: January 12, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Bruce B. Doris, Darsen D. Lu, Ali Khakifirooz, Kern Rim
  • Patent number: 10892403
    Abstract: A bottom electrode structure for a magnetic tunnel junction (MTJ) containing device is provided. The bottom electrode structure includes a mesa portion that is laterally surrounded by a recessed region. The recessed region of the bottom electrode structure is laterally adjacent to a dielectric material, and a MTJ pillar is located on the mesa portion of the bottom electrode structure. Such a configuration shields the recessed region from impinging ions thus preventing deposition of resputtered conductive metal particles from the bottom electrode onto the MTJ pillar.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: January 12, 2021
    Assignee: International Business Machines Corporation
    Inventors: Nathan P. Marchack, Bruce B. Doris, Pouya Hashemi
  • Patent number: 10886385
    Abstract: A method of introducing strain in a channel region of a FinFET device includes forming a fin structure on a substrate, the fin structure having a lower portion comprising a sacrificial layer and an upper portion comprising a strained semiconductor layer; and removing a portion of the sacrificial layer corresponding to a channel region of the FinFET device so as to release the upper portion of the fin structure from the substrate in the channel region.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: January 5, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Darsen D. Lu, Alexander Reznicek, Kern Rim
  • Publication number: 20200403151
    Abstract: A spin-transfer torque magneto-resistive random access memory (STT-MRAM) device is provided. The STT-MRAM device includes a substrate, a dielectric layer and a magnetic tunnel junction (MTJ) stack. The substrate includes a conductor and a landing pad. The MTJ stack includes a reference layer element, a free layer assembly and a barrier layer element. The reference layer element is lined with redeposited metal and is disposed on the landing pad within the dielectric layer. The free layer assembly includes a free layer element, a hard mask layer element disposed on the free layer element, redeposited metal lining sidewalls of the free and hard mask layer elements and dielectric material lining the redeposited metal. The barrier layer element is interposed between and has a same width as the reference layer element and the free layer assembly.
    Type: Application
    Filed: June 18, 2019
    Publication date: December 24, 2020
    Inventors: Anthony J. Annunziata, Bruce B. Doris, Eugene J. O'Sullivan
  • Patent number: 10840247
    Abstract: A semiconductor device that includes at least one germanium containing fin structure having a length along a <100> direction and a sidewall orientated along the (100) plane. The semiconductor device also includes at least one germanium free fin structure having a length along a <100> direction and a sidewall orientated along the (100) plane. A gate structure is present on a channel region of each of the germanium containing fin structure and the germanium free fin structure. N-type epitaxial semiconductor material having a square geometry present on the source and drain portions of the sidewalls having the (100) plane orientation of the germanium free fin structures. P-type epitaxial semiconductor material having a square geometry is present on the source and drain portions of the sidewalls having the (100) plane orientation of the germanium containing fin structures.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: November 17, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Chia-Yu Chen, Bruce B. Doris, Hong He, Rajasekhar Venigalla
  • Patent number: 10840433
    Abstract: An ultra-small diameter and a tall bottom electrode for use in magnetic random access memory (MRAM) devices containing a multilayered MTJ pillar is provided. The bottom electrode is formed by depositing a thick bottom electrode layer on a surface of a metallic etch stop layer. The bottom electrode layer is then patterned by lithography and etching to provide a bottom electrode structure. An angled ion beam etch is thereafter used to trim the bottom electrode structure into a bottom electrode having a high aspect ratio (on the order of 10:1 or greater).
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: November 17, 2020
    Assignee: International Business Machines Corporation
    Inventors: Pouya Hashemi, Bruce B. Doris, John A. Ott, Nathan P. Marchack
  • Patent number: 10833685
    Abstract: A voltage controlled oscillator (VCO) circuit and method achieves linearized frequency tuning over an extended range of analog tuning voltage by implementing a magnetic balun/transformer for biasing and coupling varactor elements. An active negative transconductance circuit of cross-coupled transistors have drains connected with a resonant tank circuit and at least a first varactor element having ends connected to respective first ends of respective first coils of a respective first and second magnetic balun. Respective second ends of respective first coils of respective first and second baluns are connected to a first reference supply voltage. A second varactor element has ends connecting respective first ends of respective second coils of said first and second baluns. A sinking of a bias current through the resonant tank circuit and the transconductance circuit generates an oscillating signal. A calibration method achieves precise VCO gain over wide tuning voltage range, thereby enhancing VCO linearity.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: November 10, 2020
    Assignee: International Business Machines Corporation
    Inventors: Sudipto Chakraborty, Rajiv Joshi, Steven J. Holmes, Bruce B. Doris
  • Publication number: 20200348256
    Abstract: An electrochemical sensor array includes a thermal oxide configured to interface with one or more analytes. There is a transistor device layer that includes a plurality of field effect transistors (FETs) on top of the thermal oxide. A contact and wiring structure layer is on top of the transistor device layer and operative to couple to control nodes of each of the plurality of FETs. The contact and wiring structure are on a side opposite to that of the thermal oxide.
    Type: Application
    Filed: May 2, 2019
    Publication date: November 5, 2020
    Inventors: Sufi Zafar, Steven J. Holmes, Bruce B. Doris
  • Publication number: 20200343614
    Abstract: A high input impedance magnetic balun/transformer having a phase balancing network (PBN) and method of operating. The balun is fully configurable and trimmable post fabrication using independently adjustable resistive and reactive parts by changing the resistance of a programmed transistor, e.g., NMOS. Parallel connected legs each having a field effect transistors (FETs) that make up NMOS device alter the impedance at the balun output terminals. The ground terminal of a secondary winding or coil at an unbalanced, single-ended side is connected to a phase balancing network. The phase balancing network includes at least two parallel legs, each leg having a resistive element in the form of a transistor device and at least one leg including a capacitive element. The transistor device at a leg can be operated in a linear region to trim the resistance and capacitances at the unbalanced side in order to achieve proper phase balancing and amplitude matching.
    Type: Application
    Filed: April 25, 2019
    Publication date: October 29, 2020
    Inventors: Sudipto Chakraborty, Rajiv Joshi, Steven J. Holmes, Bruce B. Doris