Patents by Inventor Chi-Ming Yang

Chi-Ming Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11264321
    Abstract: A semiconductor device includes providing a workpiece including an insulating material layer disposed thereon. The insulating material layer includes a trench formed therein. A barrier layer on the sidewalls of the trench is formed using a surface modification process and a surface treatment process.
    Type: Grant
    Filed: November 1, 2019
    Date of Patent: March 1, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ying-Hsueh Chang Chien, Yu-Ming Lee, Man-Kit Leung, Chi-Ming Yang
  • Patent number: 11255658
    Abstract: An ellipsometer includes a light source, a polarizer, an asymmetric wavelength retarder, an analyzer and an optical detection component. The light source is configured to provide a light beam having multiple wavelengths incident to a sample. The polarizer is disposed between the light source and the sample, and configured to polarize the light beam. The asymmetric wavelength retarder is configured to provide a varied retardation effect on the light beam varied by wavelength. The analyzer is configured to analyze a polarization state of the light beam reflected by the sample. The optical detection component is configured to detect the light beam from the analyzer.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: February 22, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Feng Yuan Hsu, Chi-Ming Yang, Ching-Hsiang Hsu, Chyi Shyuan Chern
  • Publication number: 20220005687
    Abstract: In a pattern formation method, a photoresist layer is formed over a substrate by combining a first precursor and a second precursor in a vapor state to form a photoresist material. The first precursor is an organometallic having a formula MaRbXc, where M is one or more selected from the group consisting of Sn, Bi, Sb, In, and Te, R is an alkyl group that is substituted by different EDG and/or EWG, X is a halide or sulfonate group, and 1?a?2, b?1, c?1, and b+c?4. The second precursor is water, an amine, a borane, and/or a phosphine. The photoresist material is deposited over the substrate, and selectively exposed to actinic radiation to form a latent pattern, and the latent pattern is developed by applying a developer to the selectively exposed photoresist layer to form a pattern.
    Type: Application
    Filed: May 10, 2021
    Publication date: January 6, 2022
    Inventors: Chih-Cheng LIU, Ming-Hui WENG, Jr-Hung LI, Yahru CHENG, Chi-Ming YANG, Tze-Liang LEE, Ching-Yu CHANG
  • Patent number: 11199767
    Abstract: A method for generating an electromagnetic radiation includes the following operations. A target material is introduced in a chamber. A light beam is irradiated on the target material in the chamber to generate plasma and an electromagnetic radiation. The electromagnetic radiation is collected with an optical device. A gas mixture is introduced in the chamber. The gas mixture includes a first buffer gas reactive to the target material, and a second buffer gas to slow down debris of the target material and/or plasma by-product, so as to increase an reaction efficiency of the target material and the first buffer gas, and to reduce deposition of the debris of the target material and/or the plasma by-product on the optical device.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: December 14, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chung-Chieh Lee, Feng Yuan Hsu, Chyi Shyuan Chern, Chi-Ming Yang, Tsiao-Chen Wu, Chun-Lin Chang
  • Publication number: 20210364930
    Abstract: A lithography method to pattern a first semiconductor wafer is disclosed. An optical mask is positioned over the first semiconductor wafer. A first region of the first semiconductor wafer is patterned by directing light from a light source through transparent regions of the optical mask. A second region of the first semiconductor wafer is patterned by directing energy from an energy source to the second region, wherein the patterning of the second region comprises direct-beam writing.
    Type: Application
    Filed: March 2, 2021
    Publication date: November 25, 2021
    Inventors: Tsiao-Chen Wu, Chi-Ming Yang, Hsu-Shui Liu
  • Patent number: 11153957
    Abstract: An electromagnetic radiation generation apparatus includes a collector, a gas supplier and a gas pipeline. The collector has a reflection surface configured to reflect an electromagnetic radiation. The collector includes a bottom portion, a perimeter portion, and a middle portion between the bottom portion and the perimeter portion. The middle portion of the collector includes a plurality of openings. The gas supplier is configured to provide a buffer gas. The gas pipeline is in communication with the gas supplier and the collector, and configured to purge the buffer gas through the openings of the middle portion to form a gas protection layer near the reflection surface of the collector. The openings of the middle portion include a plurality of holes arranged in an array including a plurality of rows of holes, or a plurality of concentric gaps.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: October 19, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Tzu Jeng Hsu, Chi-Ming Yang, Chyi Shyuan Chern, Jui-Chun Peng, Heng-Hsin Liu, Chin-Hsiang Lin
  • Publication number: 20210302839
    Abstract: Method of manufacturing semiconductor device includes forming photoresist layer over substrate. Forming photoresist layer includes combining first precursor and second precursor in vapor state to form photoresist material, wherein first precursor is organometallic having formula: MaRbXc, where M at least one of Sn, Bi, Sb, In, Te, Ti, Zr, Hf, V, Co, Mo, W, Al, Ga, Si, Ge, P, As, Y, La, Ce, Lu; R is substituted or unsubstituted alkyl, alkenyl, carboxylate group; X is halide or sulfonate group; and 1?a?2, b?1, c?1, and b+c?5. Second precursor is at least one of an amine, a borane, a phosphine. Forming photoresist layer includes depositing photoresist material over the substrate. The photoresist layer is selectively exposed to actinic radiation to form latent pattern, and the latent pattern is developed by applying developer to selectively exposed photoresist layer to form pattern.
    Type: Application
    Filed: January 15, 2021
    Publication date: September 30, 2021
    Inventors: Chih-Cheng LIU, Yi-Chen KUO, Jia-Lin WEI, Ming-Hui WENG, Yen-Yu CHEN, Jr-Hung LI, Yahru CHENG, Chi-Ming YANG, Tze-Liang LEE, Ching-Yu CHANG
  • Publication number: 20210305040
    Abstract: A method of forming a pattern in a photoresist layer includes forming a photoresist layer over a substrate, and reducing moisture or oxygen absorption characteristics of the photoresist layer. The photoresist layer is selectively exposed to actinic radiation to form a latent pattern, and the latent pattern is developed by applying a developer to the selectively exposed photoresist layer to form a pattern.
    Type: Application
    Filed: January 15, 2021
    Publication date: September 30, 2021
    Inventors: Yi-Chen KUO, Chih-Cheng LIU, Ming-Hui WENG, Jia-Lin WEI, Yen-Yu CHEN, Jr-Hung LI, Yahru CHENG, Chi-Ming YANG, Tze-Liang LEE, Ching-Yu CHANG
  • Publication number: 20210302833
    Abstract: A method of manufacturing a semiconductor device includes forming a photoresist layer over a substrate, including combining a first precursor and a second precursor in a vapor state to form a photoresist material, and depositing the photoresist material over the substrate. A protective layer is formed over the photoresist layer. The photoresist layer is selectively exposed to actinic radiation through the protective layer to form a latent pattern in the photoresist layer. The protective layer is removed, and the latent pattern is developed by applying a developer to the selectively exposed photoresist layer to form a pattern.
    Type: Application
    Filed: October 15, 2020
    Publication date: September 30, 2021
    Inventors: Ming-Hui WENG, Chen-Yu LIU, Chih-Cheng LIU, Yi-Chen KUO, Jia-Lin WEI, Yen-Yu CHEN, Jr-Hung LI, Yahru CHENG, Chi-Ming YANG, Tze-Liang LEE, Ching-Yu CHANG
  • Publication number: 20210305047
    Abstract: A method of manufacturing semiconductor device includes forming a multilayer photoresist structure including a metal-containing photoresist over a substrate. The multilayer photoresist structure includes two or more metal-containing photoresist layers having different physical parameters. The metal-containing photoresist is a reaction product of a first precursor and a second precursor, and each layer of the multilayer photoresist structure is formed using different photoresist layer formation parameters. The different photoresist layer formation parameters are one or more selected from the group consisting of the first precursor, an amount of the first precursor, the second precursor, an amount of the second precursor, a length of time each photoresist layer formation operation, and heating conditions of the photoresist layers.
    Type: Application
    Filed: January 15, 2021
    Publication date: September 30, 2021
    Inventors: Jia-Lin WEI, Ming-Hui WENG, Chih-Cheng LIU, Yi-Chen KUO, Yen-Yu CHEN, Yahru CHENG, Jr-Hung LI, Ching-Yu CHANG, Tze-Liang LEE, Chi-Ming YANG
  • Patent number: 11125968
    Abstract: An optical module is provided. The optical module includes a substrate, an optical element, a cover plate, and a heat-dissipating device. The optical element is disposed on the substrate, wherein the optical element has a first side and a second side opposite the first side. The cover plate is disposed on the second side of the optical element, and extends over the substrate. In addition, the substrate is disposed between the heat-dissipating device and the optical element.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: September 21, 2021
    Assignee: DELTA ELECTRONICS, INC.
    Inventors: Chi-Ming Yang, Hui-Hsiung Wang
  • Publication number: 20210265221
    Abstract: The present disclosure provides a method for forming a semiconductor structure, including dispensing a dehydrating chemical over a fin of a substrate, wherein the dehydrating chemical includes a first chemical, and a second chemical having a melting point greater than the melting point of the first chemical, and solidifying the dehydrating chemical.
    Type: Application
    Filed: May 7, 2021
    Publication date: August 26, 2021
    Inventors: CHUNG-CHIEH LEE, CHI-MING YANG, CHYI SHYUAN CHERN
  • Patent number: 11075097
    Abstract: The present disclosure, in some embodiments, relates to a substrate metrology system. The substrate metrology system includes a warpage measurement module configured to determine one or more substrate warpage parameters of a substrate. The substrate includes a plurality of conductive interconnect layers within a dielectric structure over a semiconductor substrate. A metrology module is located physically downstream of the warpage measurement module and has an optical element configured to measure one or more dimensions of the substrate. The metrology module is configured to place the optical element at a plurality of different initial positions, which are directly over a plurality of different locations on the substrate, based upon the one or more substrate warpage parameters. A substrate transport system is configured to transfer the substrate from a first position within the warpage measurement module to a non-overlapping second position within the metrology module.
    Type: Grant
    Filed: January 7, 2020
    Date of Patent: July 27, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Nai-Han Cheng, Chi-Ming Yang
  • Publication number: 20210220965
    Abstract: A wafer polishing head is provided. The wafer polishing head includes a carrier head, a plurality of piezoelectric actuators disposed on the carrier head, and a membrane disposed over the plurality of piezoelectric actuators. The plurality of piezoelectric actuators is configured to provide mechanical forces on the membrane and generate an electrical charge when receiving counterforces of the mechanical forces through the membrane. A wafer polishing system and a method for polishing a substrate using the same are also provided.
    Type: Application
    Filed: January 17, 2020
    Publication date: July 22, 2021
    Inventors: JAMES JENG-JYI HWANG, HE HUI PENG, JIANN LIH WU, CHI-MING YANG
  • Patent number: 11038867
    Abstract: A flexible and extensible architecture allows for secure searching across an enterprise. Such an architecture can provide a simple Internet-like search experience to users searching secure content inside (and outside) the enterprise. The architecture allows for the crawling and searching of a variety of sources across an enterprise, regardless of whether any of these sources conform to a conventional user role model. The architecture further allows for security attributes to be received at query time, for example, in order to provide real-time secure access to enterprise resources. The user query also can be transformed to provide for dynamic querying that provides for a more current result list than can be obtained for static queries.
    Type: Grant
    Filed: August 12, 2019
    Date of Patent: June 15, 2021
    Assignee: ORACLE INTERNATIONAL CORPORATION
    Inventors: Muralidhar Krishnaprasad, Mark Davis, Mark Ture, Cindy Hsin, Meeten Bhavsar, Hiroshi Koide, Joaquin Delgado, Chi-Ming Yang, Visar Nimani, Hui Ouyang, Sachin Bhatkar, Thomas Chang
  • Patent number: 11004746
    Abstract: The present disclosure provides a dehydrating chemical for dehydrating a semiconductor substrate under an ambient temperature, including a first chemical having a melting point below the ambient temperature, and a second chemical having a melting point greater than the melting point of the first chemical, wherein the dehydrating chemical has a melting point less than the ambient temperature by predetermined ?T0 degrees, and at least one of the first chemical and the second chemical has a saturated vapor pressure greater than a predetermined pressure PSV under 1 atm.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: May 11, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chung-Chieh Lee, Chi-Ming Yang, Chyi Shyuan Chern
  • Patent number: 10991604
    Abstract: A method of manufacturing a semiconductor structure includes loading the substrate from a first load lock chamber into a first processing chamber; disposing a conductive layer over the substrate in the first processing chamber; loading the substrate from the first processing chamber into the first load lock chamber; loading the substrate from the first load lock chamber into an enclosure filled with an inert gas and disposed between the first load lock chamber and a second load lock chamber; loading the substrate from the enclosure into the second load lock chamber; loading the substrate from the second load lock chamber into a second processing chamber; disposing a conductive member over the conductive layer in the second processing chamber; loading the substrate from the second processing chamber into the second load lock chamber; and loading the substrate from the second load lock chamber into a second load port.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: April 27, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Jyh-Shiou Hsu, Chi-Ming Yang, Tzu Jeng Hsu
  • Publication number: 20210087210
    Abstract: The present disclosure is directed to organotin cluster compounds having formula (I) and their use as photoresists in extreme ultraviolet lithography processes.
    Type: Application
    Filed: September 25, 2019
    Publication date: March 25, 2021
    Inventors: Hsu-Kai Chang, Chi-Ming YANG, Jui-Hsiung LIU, Jui-Hung FU, Hsin-Yi WU
  • Publication number: 20210039223
    Abstract: An apparatus for CMP includes a wafer carrier retaining a semiconductor wafer during a polishing operation, a slurry dispenser dispensing an abrasive slurry, and a slurry temperature control device coupled to the shiny dispenser and configured to control a temperature of the abrasive slurry. The slurry temperature control device includes a heat transferring portion surrounding a portion of the slurry dispenser, and a thermos-electric (TE) chip coupled to the heat transferring portion and configured to control the temperature of the abrasive slurry.
    Type: Application
    Filed: April 1, 2020
    Publication date: February 11, 2021
    Inventors: JAMES JENG-JYI HWANG, HE HUI PENG, JIANN LIH WU, CHI-MING YANG
  • Patent number: 10880982
    Abstract: A light generation system is provided. The light generation system includes a vaporization device, a laser device and a lens structure. The vaporization device is configured to vaporize a metal-nonmetal compound to generate a metal-nonmetal precursor gas. The laser device is configured to provide laser light, and irradiate the metal-nonmetal precursor gas released from the vaporization device with the laser light to emit a light signal. The lens structure is configured to direct the light signal toward a photomask used in a lithography process.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: December 29, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Ching-Hsiang Hsu, Feng Yuan Hsu, Hsu-Kai Chang, Chi-Ming Yang