Patents by Inventor Chi-Ming Yang

Chi-Ming Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10875148
    Abstract: An apparatus for CMP includes a wafer carrier retaining a semiconductor wafer during a polishing operation, a slurry dispenser dispensing an abrasive slurry, and a temperature control system monitoring and controlling a temperature variation during the polishing operation. The temperature control system includes a temperature sensor detecting a temperature during the polishing operation and providing a signal corresponding to the temperature, a temperature controller coupled to the temperature sensor and receiving the signal from the temperature sensor, and a cooling device coupled to the temperature controller and providing a coolant to the apparatus for CMP.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: December 29, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: He Hui Peng, James Jeng-Jyi Hwang, Chi-Ming Yang, Yung-Yao Lee, Yen-Di Tsen
  • Patent number: 10875143
    Abstract: An apparatus for CMP includes a platen, a wafer carrier retaining a semiconductor wafer during a polishing operation, a dresser configured to recondition a polishing pad disposed on the platen during the polishing operation, and a vibration-monitoring system configured to detect vibrations during the polishing operation. The vibration-monitoring system includes a first vibration sensor configured to generate a plurality of first vibration signals. An end point is triggered to the polishing when a change between the plurality of vibration signals reaches a value.
    Type: Grant
    Filed: July 24, 2019
    Date of Patent: December 29, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: James Jeng-Jyi Hwang, Jiann Lih Wu, He Hui Peng, Chi-Ming Yang
  • Publication number: 20200402806
    Abstract: In some embodiments of the present disclosure, a method of manufacturing a semiconductor structure includes providing a substrate including a first atom and a second atom; forming a compound over the substrate by bonding the first atom with a ionized etchant; and removing the compound from the substrate by bombarding the compounds with a charged particle having a bombarding energy smaller than a bonding energy between the first atom and the second atom, wherein the charged particle and the ionized etchant include different ions.
    Type: Application
    Filed: August 31, 2020
    Publication date: December 24, 2020
    Inventors: NAI-HAN CHENG, CHI-MING YANG
  • Publication number: 20200386539
    Abstract: An ellipsometer includes a light source, a polarizer, an asymmetric wavelength retarder, an analyzer and an optical detection component. The light source is configured to provide a light beam having multiple wavelengths incident to a sample. The polarizer is disposed between the light source and the sample, and configured to polarize the light beam. The asymmetric wavelength retarder is configured to provide a varied retardation effect on the light beam varied by wavelength. The analyzer is configured to analyze a polarization state of the light beam reflected by the sample. The optical detection component is configured to detect the light beam from the analyzer.
    Type: Application
    Filed: August 25, 2020
    Publication date: December 10, 2020
    Inventors: FENG YUAN HSU, CHI-MING YANG, CHING-HSIANG HSU, CHYI SHYUAN CHERN
  • Patent number: 10857649
    Abstract: The present disclosure provides an apparatus for fabricating a semiconductor device. The apparatus includes a polishing head that is operable to perform a polishing process to a wafer. The apparatus includes a retaining ring that is rotatably coupled to the polishing head. The retaining ring is operable to secure the wafer to be polished. The apparatus includes a soft material component located within the retaining ring. The soft material component is softer than silicon. The soft material component is operable to grind a bevel region of the wafer during the polishing process. The apparatus includes a spray nozzle that is rotatably coupled to the polishing head. The spray nozzle is operable to dispense a cleaning solution to the bevel region of the wafer during the polishing process.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: December 8, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Bo-I Lee, Huang Soon Kang, Chi-Ming Yang, Chin-Hsiang Lin
  • Patent number: 10760896
    Abstract: An ellipsometer includes a light source, a polarizer, an asymmetric wavelength retarder, an analyzer and an optical detection component. The light source is configured to provide a light beam having multiple wavelengths incident to a sample. The polarizer is disposed between the light source and the sample, and configured to polarize the light beam. The asymmetric wavelength retarder is configured to provide a varied retardation effect on the light beam varied by wavelength. The analyzer is configured to analyze a polarization state of the light beam reflected by the sample. The optical detection component is configured to detect the light beam from the analyzer.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: September 1, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Feng Yuan Hsu, Chi-Ming Yang, Ching-Hsiang Hsu, Chyi Shyuan Chern
  • Patent number: 10763117
    Abstract: In some embodiments of the present disclosure, a method of treating an atom on a substrate includes an operation of ionizing an etchant and the ionized etchant is a positively charged. The method includes an operation of attaching the ionized etchant on the atom. The method also includes an operation of bonding the atom with the etchant to from a compound. The method further includes sputtering the substrate with a charged particle and an operation of applying a bias on the water.
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: September 1, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Nai-Han Cheng, Chi-Ming Yang
  • Patent number: 10668592
    Abstract: A method of planarizing a wafer includes pressing the wafer against a planarization pad. The method further includes moving the planarization pad relative to the wafer. The method further includes conditioning the planarization pad using a pad conditioner. Conditioning the planarization pad includes moving the planarization pad relative to the pad conditioner. The pad conditioner includes abrasive particles having aligned tips a substantially constant distance from a surface of substrate of the pad conditioner.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: June 2, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Bo-I Lee, Soon-Kang Huang, Chi-Ming Yang, Chin-Hsiang Lin
  • Publication number: 20200168508
    Abstract: The present disclosure provides a dehydrating chemical for dehydrating a semiconductor substrate under an ambient temperature, including a first chemical having a melting point below the ambient temperature, and a second chemical having a melting point greater than the melting point of the first chemical, wherein the dehydrating chemical has a melting point less than the ambient temperature by predetermined ?T0 degrees, and at least one of the first chemical and the second chemical has a saturated vapor pressure greater than a predetermined pressure PSV under 1 atm.
    Type: Application
    Filed: November 8, 2019
    Publication date: May 28, 2020
    Inventors: CHUNG-CHIEH LEE, CHI-MING YANG, CHYI SHYUAN CHERN
  • Publication number: 20200152495
    Abstract: The present disclosure, in some embodiments, relates to a substrate metrology system. The substrate metrology system includes a warpage measurement module configured to determine one or more substrate warpage parameters of a substrate. The substrate includes a plurality of conductive interconnect layers within a dielectric structure over a semiconductor substrate. A metrology module is located physically downstream of the warpage measurement module and has an optical element configured to measure one or more dimensions of the substrate. The metrology module is configured to place the optical element at a plurality of different initial positions, which are directly over a plurality of different locations on the substrate, based upon the one or more substrate warpage parameters. A substrate transport system is configured to transfer the substrate from a first position within the warpage measurement module to a non-overlapping second position within the metrology module.
    Type: Application
    Filed: January 7, 2020
    Publication date: May 14, 2020
    Inventors: Nai-Han Cheng, Chi-Ming Yang
  • Publication number: 20200150382
    Abstract: An optical module is provided. The optical module includes a substrate, an optical element, a cover plate, and a heat-dissipating device. The optical element is disposed on the substrate, wherein the optical element has a first side and a second side opposite the first side. The cover plate is disposed on the second side of the optical element, and extends over the substrate. In addition, the substrate is disposed between the heat-dissipating device and the optical element.
    Type: Application
    Filed: March 5, 2019
    Publication date: May 14, 2020
    Inventors: Chi-Ming YANG, Hui-Hsiung WANG
  • Publication number: 20200137863
    Abstract: An electromagnetic radiation generation apparatus includes a collector, a gas supplier and a gas pipeline. The collector has a reflection surface configured to reflect an electromagnetic radiation. The collector includes a bottom portion, a perimeter portion, and a middle portion between the bottom portion and the perimeter portion. The middle portion of the collector includes a plurality of openings. The gas supplier is configured to provide a buffer gas. The gas pipeline is in communication with the gas supplier and the collector, and configured to purge the buffer gas through the openings of the middle portion to form a gas protection layer near the reflection surface of the collector. The openings of the middle portion include a plurality of holes arranged in an array including a plurality of rows of holes, or a plurality of concentric gaps.
    Type: Application
    Filed: July 8, 2019
    Publication date: April 30, 2020
    Inventors: TZU JENG HSU, CHI-MING YANG, CHYI SHYUAN CHERN, JUI-CHUN PENG, HENG-HSIN LIU, CHIN-HSIANG LIN
  • Publication number: 20200117076
    Abstract: A method for generating an electromagnetic radiation includes the following operations. A target material is introduced in a chamber. A light beam is irradiated on the target material in the chamber to generate plasma and an electromagnetic radiation. The electromagnetic radiation is collected with an optical device. A gas mixture is introduced in the chamber. The gas mixture includes a first buffer gas reactive to the target material, and a second buffer gas to slow down debris of the target material and/or plasma by-product, so as to increase an reaction efficiency of the target material and the first buffer gas, and to reduce deposition of the debris of the target material and/or the plasma by-product on the optical device.
    Type: Application
    Filed: December 13, 2019
    Publication date: April 16, 2020
    Inventors: CHUNG-CHIEH LEE, FENG YUAN HSU, CHYI SHYUAN CHERN, CHI-MING YANG, TSIAO-CHEN WU, CHUN-LIN CHANG
  • Publication number: 20200072598
    Abstract: An ellipsometer includes a light source, a polarizer, an asymmetric wavelength retarder, an analyzer and an optical detection component. The light source is configured to provide a light beam having multiple wavelengths incident to a sample. The polarizer is disposed between the light source and the sample, and configured to polarize the light beam. The asymmetric wavelength retarder is configured to provide a varied retardation effect on the light beam varied by wavelength. The analyzer is configured to analyze a polarization state of the light beam reflected by the sample. The optical detection component is configured to detect the light beam from the analyzer.
    Type: Application
    Filed: August 29, 2018
    Publication date: March 5, 2020
    Inventors: FENG YUAN HSU, CHI-MING YANG, CHING-HSIANG HSU, CHYI SHYUAN CHERN
  • Publication number: 20200066606
    Abstract: A method includes illuminating a wafer by an X-ray, detecting a spatial domain pattern produced when illuminating the wafer by the X-ray, identifying at least one peak from the detected spatial domain pattern, and analyzing the at least one peak to obtain a morphology of a transistor structure of the wafer.
    Type: Application
    Filed: October 28, 2019
    Publication date: February 27, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Su-Horng LIN, Chi-Ming YANG
  • Publication number: 20200066633
    Abstract: A semiconductor device includes providing a workpiece including an insulating material layer disposed thereon. The insulating material layer includes a trench formed therein. A barrier layer on the sidewalls of the trench is formed using a surface modification process and a surface treatment process.
    Type: Application
    Filed: November 1, 2019
    Publication date: February 27, 2020
    Inventors: Ying-Hsueh Chang Chien, Yu-Ming Lee, Man-Kit Leung, Chi-Ming Yang
  • Publication number: 20200045801
    Abstract: A light generation system is provided. The light generation system includes a vaporization device, a laser device and a lens structure. The vaporization device is configured to vaporize a metal-nonmetal compound to generate a metal-nonmetal precursor gas. The laser device is configured to provide laser light, and irradiate the metal-nonmetal precursor gas released from the vaporization device with the laser light to emit a light signal. The lens structure is configured to direct the light signal toward a photomask used in a lithography process.
    Type: Application
    Filed: June 12, 2019
    Publication date: February 6, 2020
    Inventors: CHING-HSIANG HSU, FENG YUAN HSU, HSU-KAI CHANG, CHI-MING YANG
  • Publication number: 20200039019
    Abstract: An apparatus for CMP includes a platen, a wafer carrier retaining a semiconductor wafer during a polishing operation, a dress configured to recondition a polishing pad disposed on the platen during the polishing operation, and a vibration-monitoring system configured to detect vibrations during the polishing operation. The vibration-monitoring system includes a first vibration sensor configured to generate a plurality of first vibration signals. An end point is triggered to the polishing when a change between the plurality of vibration signals reaches a value.
    Type: Application
    Filed: July 24, 2019
    Publication date: February 6, 2020
    Inventors: JAMES JENG-JYI HWANG, JIANN LIH WU, HE HUI PENG, CHI-MING YANG
  • Publication number: 20200035524
    Abstract: A method of manufacturing a semiconductor structure includes loading the substrate from a first load lock chamber into a first processing chamber; disposing a conductive layer over the substrate in the first processing chamber; loading the substrate from the first processing chamber into the first load lock chamber; loading the substrate from the first load lock chamber into an enclosure filled with an inert gas and disposed between the first load lock chamber and a second load lock chamber; loading the substrate from the enclosure into the second load lock chamber; loading the substrate from the second load lock chamber into a second processing chamber; disposing a conductive member over the conductive layer in the second processing chamber; loading the substrate from the second processing chamber into the second load lock chamber; and loading the substrate from the second load lock chamber into a second load port.
    Type: Application
    Filed: June 21, 2019
    Publication date: January 30, 2020
    Inventors: JYH-SHIOU HSU, CHI-MING YANG, TZU JENG HSU
  • Patent number: 10541164
    Abstract: The present disclosure, in some embodiments, relates to a substrate metrology system. The substrate metrology system includes a substrate warpage measurement module configured to determine one or more substrate warpage parameters of a substrate by taking a plurality of separate measurements at a plurality of different positions over a substrate. The substrate has a plurality of conductive interconnect layers within a dielectric structure over a semiconductor substrate and a conductive bump disposed over the dielectric structure and configured to be coupled to an additional substrate of a multi-dimensional chip. A substrate metrology module has an optical component and is configured to measure one or more dimensions of the conductive bump. A position control element is configured to move the optical component. A feed-forward path is coupled between an output of the substrate warpage measurement module and an input of the position control element.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: January 21, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Nai-Han Cheng, Chi-Ming Yang