Patents by Inventor Chien-hung Chen

Chien-hung Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240170556
    Abstract: A method for forming a semiconductor structure is provided. The method includes forming a spacer layer along a first fin structure and a second fin structure, etching a first portion of the spacer layer and the first fin structure to form first fin spacers and a first recess between the first fin spacers, etching a second portion of the spacer layer and the second fin structure to form second fin spacers and a second recess between the second fin spacers, and forming a first source/drain feature in the first recess and a second source/drain feature in the second recess. The second fin structure is wider than the first fin structure. The first fin spacers have a first height, and the second fin spacers have a second height that is greater than the first height.
    Type: Application
    Filed: February 20, 2023
    Publication date: May 23, 2024
    Inventors: Shih-Cheng CHEN, Zhi-Chang LIN, Jung-Hung CHANG, Chien-Ning YAO, Tsung-Han CHUANG, Kuo-Cheng CHIANG
  • Publication number: 20240170337
    Abstract: The present disclosure describes a semiconductor structure with a dielectric liner. The semiconductor structure includes a substrate and a fin structure on the substrate. The fin structure includes a stacked fin structure, a fin bottom portion below the stacked fin structure, and an isolation layer between the stacked fin structure and the bottom fin portion. The semiconductor structure further includes a dielectric liner in contact with an end of the stacked fin structure and a spacer structure in contact with the dielectric liner.
    Type: Application
    Filed: January 30, 2024
    Publication date: May 23, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company Ltd.
    Inventors: Zhi-Chang LIN, Shih-Cheng CHEN, Kuo-Cheng CHIANG, Kuan-Ting PAN, Jung-Hung CHANG, Lo-Heng CHANG, Chien Ning YAO
  • Publication number: 20240170534
    Abstract: A method for manufacturing a nanosheet semiconductor device includes: forming a liner layer to cover first and second fin structures, each of the fin structures including a stacked structure, a poly gate disposed on the stacked structure, and inner spacers, the stacked structure including sacrificial features covered by the inner spacers, and channel features disposed to alternate with the sacrificial features; forming a dielectric layer to cover the liner layer, the dielectric layer including an upper portion, a lower portion, and an interconnecting portion that interconnects the upper and lower portions and that laterally covers the liner layer; subjecting the upper and lower portions to a directional treatment; and removing the upper and interconnecting portions of the dielectric layer and a portion of the liner layer, to form a liner and a bottom dielectric insulator disposed on the liner.
    Type: Application
    Filed: February 23, 2023
    Publication date: May 23, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Zhi-Chang LIN, Ko-Feng CHEN, Chien-Ning YAO, Chien-Hung LIN
  • Publication number: 20240160068
    Abstract: A display device is provided. The display device includes a first electrode and a second electrode. The first electrode includes a first main portion, a first peripheral portion, and a plurality of first extending portions. Part of the first extending portions extend into the first peripheral portion and are connected to each other via a first vertically-extending portion. Other part of the first extending portions do not extend into the first peripheral portion and are separated from each other. The second electrode includes a second main portion, a second peripheral portion, and a plurality of second extending portions. Part of the second extending portions extend into the second peripheral portion and are connected to each other via a second vertically-extending portion. Other part of the second extending portions do not extend into the second peripheral portion and are separated from each other.
    Type: Application
    Filed: January 24, 2024
    Publication date: May 16, 2024
    Inventors: Tsung-Han TSAI, Chien-Hung CHEN, Mei-Chun SHIH
  • Patent number: 11984419
    Abstract: Package structures and methods for manufacturing the same are provided. The package structure includes a first bump structure formed over a first substrate. The first bump structure includes a first pillar layer formed over the first substrate and a first barrier layer formed over the first pillar layer. In addition, the first barrier layer has a first protruding portion laterally extending outside a first edge of the first pillar layer. The package structure further includes a second bump structure bonded to the first bump structure through a solder joint. In addition, the second bump structure includes a second pillar layer formed over a second substrate and a second barrier layer formed over the second pillar layer. The first protruding portion of the first barrier layer is spaced apart from the solder joint.
    Type: Grant
    Filed: July 26, 2022
    Date of Patent: May 14, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Cheng-Hung Chen, Yu-Nu Hsu, Chun-Chen Liu, Heng-Chi Huang, Chien-Chen Li, Shih-Yen Chen, Cheng-Nan Hsieh, Kuo-Chio Liu, Chen-Shien Chen, Chin-Yu Ku, Te-Hsun Pang, Yuan-Feng Wu, Sen-Chi Chiang
  • Publication number: 20240153958
    Abstract: A semiconductor device structure, along with methods of forming such, are described. The structure includes a plurality of semiconductor layers having a first group of semiconductor layers, a second group of semiconductor layers disposed over and aligned with the first group of semiconductor layers, and a third group of semiconductor layers disposed over and aligned with the second group of semiconductor layers. The structure further includes a first source/drain epitaxial feature in contact with a first number of semiconductor layers of the first group of semiconductor layers and a second source/drain epitaxial feature in contact with a second number of semiconductor layers of the third group of semiconductor layers. The first number of semiconductor layers of the first group of semiconductor layers is different from the second number of semiconductor layers of the third group of semiconductor layers.
    Type: Application
    Filed: January 7, 2024
    Publication date: May 9, 2024
    Inventors: Jung-Hung CHANG, Zhi-Chang LIN, Shih-Cheng CHEN, Chien Ning YAO, Kuo-Cheng CHIANG, Chih-Hao WANG
  • Patent number: 11978740
    Abstract: A layer stack including a first bonding dielectric material layer, a dielectric metal oxide layer, and a second bonding dielectric material layer is formed over a top surface of a substrate including a substrate semiconductor layer. A conductive material layer is formed by depositing a conductive material over the second bonding dielectric material layer. The substrate semiconductor layer is thinned by removing portions of the substrate semiconductor layer that are distal from the layer stack, whereby a remaining portion of the substrate semiconductor layer includes a top semiconductor layer. A semiconductor device may be formed on the top semiconductor layer.
    Type: Grant
    Filed: February 17, 2022
    Date of Patent: May 7, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Harry-Hak-Lay Chuang, Kuo-Ching Huang, Wei-Cheng Wu, Hsin Fu Lin, Henry Wang, Chien Hung Liu, Tsung-Hao Yeh, Hsien Jung Chen
  • Patent number: 11973164
    Abstract: A light-emitting device includes a substrate including a top surface; a semiconductor stack including a first semiconductor layer, an active layer and a second semiconductor layer formed on the substrate, wherein a portion of the top surface is exposed; a distributed Bragg reflector (DBR) formed on the semiconductor stack and contacting the portion of the top surface of the substrate; a metal layer formed on the distributed Bragg reflector (DBR), contacting the portion of the top surface of the substrate and being insulated with the semiconductor stack; and an insulation layer formed on the metal layer and contacting the portion of the top surface of the substrate.
    Type: Grant
    Filed: January 3, 2023
    Date of Patent: April 30, 2024
    Assignee: EPISTAR CORPORATION
    Inventors: Che-Hung Lin, Chien-Chih Liao, Chi-Shiang Hsu, De-Shan Kuo, Chao-Hsing Chen
  • Publication number: 20240136346
    Abstract: A semiconductor die package includes an inductor-capacitor (LC) semiconductor die that is directly bonded with a logic semiconductor die. The LC semiconductor die includes inductors and capacitors that are integrated into a single die. The inductors and capacitors of the LC semiconductor die may be electrically connected with transistors and other logic components on the logic semiconductor die to form a voltage regulator circuit of the semiconductor die package. The integration of passive components (e.g., the inductors and capacitors) of the voltage regulator circuit into a single semiconductor die reduces signal propagation distances in the voltage regulator circuit, which may increase the operating efficiency of the voltage regulator circuit, may reduce the formfactor for the semiconductor die package, may reduce parasitic capacitance and/or may reduce parasitic inductance in the voltage regulator circuit (thereby improving the performance of the voltage regulator circuit), among other examples.
    Type: Application
    Filed: April 17, 2023
    Publication date: April 25, 2024
    Inventors: Chien Hung LIU, Yu-Sheng CHEN, Yi Ching ONG, Hsien Jung CHEN, Kuen-Yi CHEN, Kuo-Ching HUANG, Harry-HakLay CHUANG, Wei-Cheng WU, Yu-Jen WANG
  • Patent number: 11967594
    Abstract: A semiconductor device structure, along with methods of forming such, are described. The structure includes a stack of semiconductor layers spaced apart from and aligned with each other, a first source/drain epitaxial feature in contact with a first one or more semiconductor layers of the stack of semiconductor layers, and a second source/drain epitaxial feature disposed over the first source/drain epitaxial feature. The second source/drain epitaxial feature is in contact with a second one or more semiconductor layers of the stack of semiconductor layers. The structure further includes a first dielectric material disposed between the first source/drain epitaxial feature and the second source/drain epitaxial feature and a first liner disposed between the first source/drain epitaxial feature and the second source/drain epitaxial feature. The first liner is in contact with the first source/drain epitaxial feature and the first dielectric material.
    Type: Grant
    Filed: August 10, 2022
    Date of Patent: April 23, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shih-Cheng Chen, Zhi-Chang Lin, Jung-Hung Chang, Lo Heng Chang, Chien Ning Yao, Kuo-Cheng Chiang, Chih-Hao Wang
  • Publication number: 20240109544
    Abstract: A method and device for collision predicting and readable computer storage medium. The method for collision predicting includes: obtaining a host vehicle motion track of a host vehicle; obtaining at least one host vehicle track point on the host vehicle motion track; establishing a collision prediction area around the host vehicle track point, and matching the collision prediction area to a time point where the host vehicle is located at the host vehicle track point; obtaining a target vehicle motion track of a target vehicle; obtaining at least one target vehicle track point on the target vehicle motion track, and matching the target vehicle track point to a time point where the target vehicle is located at the target vehicle track point; and calculating a projected collision time between the host vehicle and the target vehicle when a preset condition is met.
    Type: Application
    Filed: December 14, 2022
    Publication date: April 4, 2024
    Inventors: CHIEN-HUNG YU, WEI-JIE CHEN
  • Publication number: 20240114688
    Abstract: A memory structure including a substrate, a first doped region, a second doped region, a first gate, a second gate, a first charge storage structure, and a second charge storage structure is provided. The first gate is located on the first doped region. The second gate is located on the second doped region. The first charge storage structure is located between the first gate and the first doped region. The first charge storage structure includes a first tunneling dielectric layer, a first dielectric layer, and a first charge storage layer. The second charge storage structure is located between the second gate and the second doped region. The second charge storage structure includes a second tunneling dielectric layer, a second dielectric layer, and a second charge storage layer. The thickness of the second tunneling dielectric layer is greater than the thickness of the first tunneling dielectric layer.
    Type: Application
    Filed: November 21, 2022
    Publication date: April 4, 2024
    Applicant: United Microelectronics Corp.
    Inventors: Chia-Wen Wang, Chien-Hung Chen, Chia-Hui Huang, Ling Hsiu Chou, Jen Yang Hsueh, Chih-Yang Hsu
  • Publication number: 20240113429
    Abstract: An electronic device including a bracket and an antenna is provided. The bracket includes first, second, third, and fourth surfaces. The antenna includes a radiator. The radiator includes first, second, third, and fourth portions. The first portion is located on the first surface and includes connected first and second sections. The second portion is located on the second surface and includes third, fourth, fifth, and sixth sections. The third section, the fourth section, and the fifth sections are bent and connected to form a U shape. The third portion is located on the third surface and is connected to the second section and the fourth section. The fourth portion is located on the fourth surface and is connected to the fifth section, the sixth section, and the third portion. The radiator is adapted to resonate at a low frequency band and a first high frequency band.
    Type: Application
    Filed: August 16, 2023
    Publication date: April 4, 2024
    Applicant: PEGATRON CORPORATION
    Inventors: Chien-Yi Wu, Chao-Hsu Wu, Sheng-Chin Hsu, Chia-Hung Chen, Chih-Wei Liao, Hau Yuen Tan, Hao-Hsiang Yang, Shih-Keng Huang
  • Patent number: 11945907
    Abstract: Provided are an LCP film and a laminate comprising the same. The LCP film is made of an LCP resin comprising a structural unit represented by Formula (1): -L1-Ar-L2- (1), wherein -L1- and -L2- are respectively —O— or —CO—; —Ar— is an arylene group. Formula (1) comprises structural units Based on a total molar number of the structural unit represented by Formula (1), a molar number of the structural unit represented by Formula (I) is in the range from 15 mole % to mole %, and a sum of molar numbers of the structural units represented by Formulae (I) and (II) is in the range from 80 mole % to 100 mole %. The LCP film has a thickness and a transmittance, wherein when values of the thickness (in ?m) and the transmittance are put into Formula (III), the obtained value is from 0.055 to 0.090. Formula (III): Log(1/TT %)/(Thickness)0.5.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: April 2, 2024
    Assignee: CHANG CHUN PLASTICS CO., LTD.
    Inventors: An-Pang Tu, Chia-Hung Wu, Chien-Chun Chen
  • Publication number: 20240105644
    Abstract: A semiconductor die package includes a high dielectric constant (high-k) dielectric layer over a device region of a first semiconductor die that is bonded with a second semiconductor die in a wafer on wafer (WoW) configuration. A through silicon via (TSV) structure may be formed through the device region. The high-k dielectric layer has an intrinsic negative charge polarity that provides a coupling voltage to modify the electric potential in the device region. In particular, the electron carriers in high-k dielectric layer attracts hole charge carriers in device region, which suppresses trap-assist tunnels that result from surface defects formed during etching of the recess for the TSV structure. Accordingly, the high-k dielectric layer described herein reduces the likelihood of (and/or the magnitude of) current leakage in semiconductor devices that are included in the device region of the first semiconductor die.
    Type: Application
    Filed: January 6, 2023
    Publication date: March 28, 2024
    Inventors: Tsung-Hao YEH, Chien Hung LIU, Hsien Jung CHEN, Hsin Heng WANG, Kuo-Ching HUANG
  • Publication number: 20240096400
    Abstract: A memory device includes a memory bank with a memory cell connected to a local bit line and a word line. A first local data latch is connected to the local bit line and has an enable terminal configured to receive a first local clock signal. A word line latch is configured to latch a word line select signal, and has an enable terminal configured to receive a second local clock signal. A first global data latch is connected to the first local data latch by a global bit line, and the first global data latch has an enable terminal configured to receive a global clock signal. A global address latch is connected to the word line latch and has an enable terminal configured to receive the global clock signal. A bank select latch is configured to latch a bank select signal, and has an enable terminal configured to receive the second local clock signal.
    Type: Application
    Filed: January 23, 2023
    Publication date: March 21, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien-Yuan CHEN, Hau-Tai SHIEH, Cheng Hung LEE
  • Patent number: 11935786
    Abstract: A method of fabricating a semiconductor device includes recessing an upper portion of a first dielectric layer disposed over a conductive feature. The method includes filling the recessed upper portion with a second dielectric layer to form a void embedded in the second dielectric layer. The method includes etching the second dielectric layer and the first dielectric layer to form a contact opening that exposes at least a portion of the conductive feature using the void to vertically align at least a lower portion of the contact opening with the conductive feature. The method includes filling the contact opening with a conductive material to form a contact feature electrically coupled to the conductive feature.
    Type: Grant
    Filed: July 25, 2022
    Date of Patent: March 19, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsui-Ling Yen, Chien-Hung Chen
  • Publication number: 20240087974
    Abstract: An semiconductor package includes a redistribution structure, a first semiconductor device, a second semiconductor device, an underfill layer and an encapsulant. The first semiconductor device is disposed on and electrically connected with the redistribution structure, wherein the first semiconductor device has a first bottom surface, a first top surface and a first side surface connecting with the first bottom surface and the first top surface, the first side surface comprises a first sub-surface and a second sub-surface connected with each other, the first sub-surface is connected with the first bottom surface, and a first obtuse angle is between the first sub-surface and the second sub-surface.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 14, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Sheng Lin, Chin-Hua Wang, Shu-Shen Yeh, Chien-Hung Chen, Po-Yao Lin, Shin-Puu Jeng
  • Publication number: 20240088026
    Abstract: A semiconductor device according to embodiments of the present disclosure includes a first die including a first bonding layer and a second die including a second hybrid bonding layer. The first bonding layer includes a first dielectric layer and a first metal coil embedded in the first dielectric layer. The second bonding layer includes a second dielectric layer and a second metal coil embedded in the second dielectric layer. The second hybrid bonding layer is bonded to the first hybrid bonding layer such that the first dielectric layer is bonded to the second dielectric layer and the first metal coil is bonded to the second metal coil.
    Type: Application
    Filed: January 17, 2023
    Publication date: March 14, 2024
    Inventors: Yi Ching Ong, Wei-Cheng Wu, Chien Hung Liu, Harry-Haklay Chuang, Yu-Sheng Chen, Yu-Jen Wang, Kuo-Ching Huang
  • Patent number: 11929287
    Abstract: The present disclosure describes a semiconductor structure with a dielectric liner. The semiconductor structure includes a substrate and a fin structure on the substrate. The fin structure includes a stacked fin structure, a fin bottom portion below the stacked fin structure, and an isolation layer between the stacked fin structure and the bottom fin portion. The semiconductor structure further includes a dielectric liner in contact with an end of the stacked fin structure and a spacer structure in contact with the dielectric liner.
    Type: Grant
    Filed: April 23, 2021
    Date of Patent: March 12, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Zhi-Chang Lin, Shih-Cheng Chen, Kuo-Cheng Chiang, Kuan-Ting Pan, Jung-Hung Chang, Lo-Heng Chang, Chien Ning Yao