Patents by Inventor Chih-Sheng Chang

Chih-Sheng Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11171238
    Abstract: Methods are disclosed herein for forming fin-like field effect transistors (FinFETs) that maximize strain in channel regions of the FinFETs. An exemplary method includes forming a fin having a first width over a substrate. The fin includes a first semiconductor material, a second semiconductor material disposed over the first semiconductor material, and a third semiconductor material disposed over the second semiconductor material. A portion of the second semiconductor material is oxidized, thereby forming a second semiconductor oxide material. The third semiconductor material is trimmed to reduce a width of the third semiconductor material from the first width to a second width. The method further includes forming an isolation feature adjacent to the fin. The method further includes forming a gate structure over a portion of the fin, such that the gate structure is disposed between source/drain regions of the fin.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: November 9, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kuo-Cheng Ching, Ka-Hing Fung, Chih-Sheng Chang, Zhiqiang Wu
  • Publication number: 20210343705
    Abstract: A semiconductor device includes a first channel region disposed over a substrate, and a first gate structure disposed over the first channel region. The first gate structure includes a gate dielectric layer disposed over the channel region, a lower conductive gate layer disposed over the gate dielectric layer, a ferroelectric material layer disposed over the lower conductive gate layer, and an upper conductive gate layer disposed over the ferroelectric material layer. The ferroelectric material layer is in direct contact with the gate dielectric layer and the lower gate conductive layer, and has a U-shape cross section.
    Type: Application
    Filed: June 21, 2021
    Publication date: November 4, 2021
    Inventors: Chia-Wen CHANG, Hong-Nien LIN, Chien-Hsing LEE, Chih-Sheng CHANG, Ling-Yen YEH, Wilman TSAI, Yee-Chia YEO
  • Patent number: 11158637
    Abstract: The present disclosure describes a fin-like field-effect transistor (FinFET). The device includes one or more fin structures over a substrate, each with source/drain (S/D) features and a high-k/metal gate (HK/MG). A first HK/MG in a first gate region wraps over an upper portion of a first fin structure, the first fin structure including an epitaxial silicon (Si) layer as its upper portion and an epitaxial growth silicon germanium (SiGe), with a silicon germanium oxide (SiGeO) feature at its outer layer, as its middle portion, and the substrate as its bottom portion. A second HK/MG in a second gate region, wraps over an upper portion of a second fin structure, the second fin structure including an epitaxial SiGe layer as its upper portion, an epitaxial Si layer as it upper middle portion, an epitaxial SiGe layer as its lower middle portion, and the substrate as its bottom portion.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: October 26, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kuo-Cheng Ching, Ka-Hing Fung, Chih-Sheng Chang, Zhiqiang Wu
  • Patent number: 11152456
    Abstract: A device includes a bottom electrode that includes a first electrically conducive material; a dielectric layer over the bottom electrode; an internal metal layer over the dielectric layer; a ferroelectric layer over the internal metal layer; and a top electrode over the ferroelectric layer, the top electrode including a second electrically conductive material, an area of the top electrode being smaller than an area of the internal metal layer.
    Type: Grant
    Filed: November 1, 2019
    Date of Patent: October 19, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Chih-Sheng Chang
  • Patent number: 11145750
    Abstract: A semiconductor device comprises a fin structure disposed over a substrate; a gate structure disposed over part of the fin structure; a source/drain structure, which includes part of the fin structure not covered by the gate structure; an interlayer dielectric layer formed over the fin structure, the gate structure, and the source/drain structure; a contact hole formed in the interlayer dielectric layer; and a contact material disposed in the contact hole. The fin structure extends in a first direction and includes an upper layer, wherein a part of the upper layer is exposed from an isolation insulating layer. The gate structure extends in a second direction perpendicular to the first direction. The contact material includes a silicon phosphide layer and a metal layer.
    Type: Grant
    Filed: July 1, 2019
    Date of Patent: October 12, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Cheng-Yi Peng, Chih Chieh Yeh, Chih-Sheng Chang, Hung-Li Chiang, Hung-Ming Chen, Yee-Chia Yeo
  • Patent number: 11145676
    Abstract: A memory device includes a plurality of word lines, a plurality of bit lines, a plurality of source lines and a plurality of multi-level memory cells is introduced. Each of the multi-level memory cells is coupled to one of the word lines, one of the bit lines and one of the source lines. Each of the multi-level memory cells includes a ferroelectric storage element and a magneto-resistive storage element cascaded to the ferroelectric storage element. The ferroelectric storage element is configured to store a first bit of a multi-bit data. The magneto-resistive storage element is configured to store a second bit of the multi-bit data.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: October 12, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Li Chiang, Chao-Ching Cheng, Chih-Sheng Chang, Tzu-Chiang Chen, Jin Cai
  • Patent number: 11137581
    Abstract: A wafer-level homogeneous bonding optical structure includes two optical lens sets disposed on an optically transparent wafer and a spacer disposed on the optically transparent wafer and between the two optical lens sets. The spacer is homogeneously bonded to and integrated with the optically transparent wafer in the absence of a heterogeneous adhesive.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: October 5, 2021
    Assignee: HIMAX TECHNOLOGIES LIMITED
    Inventors: Chih-Sheng Chang, Teng-Te Huang, Shu-Hao Hsu, Jun-Yu Zhan, Jen-Hui Lai
  • Patent number: 11127675
    Abstract: An interconnection structure includes a first interlayer dielectric layer, a first conductive line, a protection layer, a second interlayer dielectric layer, and a connection plug. The first conductive line is partially disposed in the first interlayer dielectric layer. The protection layer is disposed on the first conductive line and the first interlayer dielectric layer. The protection layer covers a top surface and a sidewall of the first conductive line. The protection layer includes a recess disposed corresponding to the first conductive line in a vertical direction. The second interlayer dielectric layer is disposed on the protection layer. The connection plug penetrates at least a part of the second interlayer dielectric layer and the protection layer for being connected with the first conductive line.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: September 21, 2021
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Min-Shiang Hsu, Yu-Han Tsai, Chih-Sheng Chang
  • Publication number: 20210288138
    Abstract: A metal-insulator-metal (MIM) capacitor includes a substrate, a first metal layer, a deposition structure, a dielectric layer and a second metal layer. The first metal layer is disposed on the substrate and has a planarized surface. The deposition structure is disposed on the first metal layer, and at least a portion of the deposition structure extends into the planarized surface, wherein the first metal layer and the deposition structure have the same material. The dielectric layer is disposed on the deposition structure. The second metal layer is disposed on the dielectric layer.
    Type: Application
    Filed: April 30, 2020
    Publication date: September 16, 2021
    Inventors: Bo-Wei HUANG, Chun-Wei KANG, Ho-Yu LAI, Chih-Sheng CHANG
  • Patent number: 11114540
    Abstract: A semiconductor device includes a first potential supply line for supplying a first potential, a second potential supply line for supplying a second potential lower than the first potential, a functional circuit, and at least one of a first switch disposed between the first potential supply line and the functional circuit and a second switch disposed between the second potential supply line and the functional circuit. The first switch and the second switch are negative capacitance FET.
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: September 7, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chien-Hsing Lee, Chih-Sheng Chang, Wilman Tsai, Chia-Wen Chang, Ling-Yen Yeh, Carlos H. Diaz
  • Publication number: 20210210636
    Abstract: An MFMIS-FET includes a MOSFET having a three-dimensional structure that allows the MOSFET to have an effective area that is greater than the footprint of the MFM or the MOSFET. In some embodiment, the gate electrode of the MOSFET and the bottom electrode of the MFM are united. In some, they have equal areas. In some embodiments, the MFM and the MOSFET have nearly equal footprints. In some embodiments, the effective area of the MOSFET is much greater than the effective area of the MFM. These structures reduce the capacitance ratio between the MFM structure and the MOSFET without reducing the area of the MFM structure in a way that would decrease drain current.
    Type: Application
    Filed: January 3, 2020
    Publication date: July 8, 2021
    Inventors: Hung-Li Chiang, Chih-Sheng Chang, Tzu-Chiang Chen
  • Patent number: 11056401
    Abstract: A semiconductor device includes a first source/drain feature adjoining first nanostructures, and a first multilayer work function structure surrounding the first nanostructures. The first multilayer work function structure includes a first middle dielectric layer around the first nanostructures and a first metal layer around and in contact with the first middle dielectric layer. The semiconductor device also includes a second source/drain feature adjoining second nanostructures, and a second multilayer work function structure surrounding the second nanostructures. The second multilayer work function structure includes a second middle dielectric layer around the second nanostructures and a second metal layer around and in contact with the second middle dielectric layer. The first middle dielectric layer and the second middle dielectric layer are made of dielectric materials. The second metal layer and the first metal layer are made of the same metal material.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: July 6, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: I-Sheng Chen, Tzu-Chiang Chen, Cheng-Hsien Wu, Chih-Chieh Yeh, Chih-Sheng Chang
  • Publication number: 20210202743
    Abstract: Methods are disclosed herein for forming fin-like field effect transistors (FinFETs) that maximize strain in channel regions of the FinFETs. An exemplary method includes forming a fin having a first width over a substrate. The fin includes a first semiconductor material, a second semiconductor material disposed over the first semiconductor material, and a third semiconductor material disposed over the second semiconductor material. A portion of the second semiconductor material is oxidized, thereby forming a second semiconductor oxide material. The third semiconductor material is trimmed to reduce a width of the third semiconductor material from the first width to a second width. The method further includes forming an isolation feature adjacent to the fin. The method further includes forming a gate structure over a portion of the fin, such that the gate structure is disposed between source/drain regions of the fin.
    Type: Application
    Filed: March 10, 2021
    Publication date: July 1, 2021
    Inventors: Kuo-Cheng Chiang, Ka-Hing Fung, Chih-Sheng Chang, Zhiqiang Wu
  • Publication number: 20210193575
    Abstract: A connection structure of a semiconductor device is provided in the present invention. The connection structure includes an interlayer dielectric, a top metal structure, and a passivation layer. The interlayer dielectric is disposed on a substrate. The top metal structure is disposed on the interlayer dielectric. The top metal structure includes a bottom portion and a top portion disposed on the bottom portion. The bottom portion includes a first sidewall, and the top portion includes a second sidewall. A slope of the first sidewall is larger than a slope of the second sidewall. The passivation layer is conformally disposed on the second sidewall, the first sidewall, and a top surface of the interlayer dielectric.
    Type: Application
    Filed: March 4, 2021
    Publication date: June 24, 2021
    Inventors: Chen-Yi Weng, Shih-Che Huang, Ching-Li Yang, Chih-Sheng Chang
  • Patent number: 11043489
    Abstract: A semiconductor device includes a first channel region disposed over a substrate, and a first gate structure disposed over the first channel region. The first gate structure includes a gate dielectric layer disposed over the channel region, a lower conductive gate layer disposed over the gate dielectric layer, a ferroelectric material layer disposed over the lower conductive gate layer, and an upper conductive gate layer disposed over the ferroelectric material layer. The ferroelectric material layer is in direct contact with the gate dielectric layer and the lower gate conductive layer, and has a U-shape cross section.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: June 22, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Wen Chang, Hong-Nien Lin, Chien-Hsing Lee, Chih-Sheng Chang, Ling-Yen Yeh, Wilman Tsai, Yee-Chia Yeo
  • Patent number: 11037835
    Abstract: A method of forming a semiconductor device includes providing a semiconductor structure that includes a first semiconductor material extending from a first region to a second region. The method further includes removing a portion of the first semiconductor material in the second region to form a recess, where the recess exposes a sidewall of the first semiconductor material disposed in the first region; forming a dielectric material covering the sidewall; while the dielectric material covers the sidewall, epitaxially growing a second semiconductor material in the second region adjacent the dielectric material; and forming a first fin including the first semiconductor material and a second fin including the second semiconductor material.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: June 15, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: I-Sheng Chen, Tzu-Chiang Chen, Chih-Sheng Chang, Cheng-Hsien Wu
  • Publication number: 20210175342
    Abstract: In a method of manufacturing a negative capacitance structure, a dielectric layer is formed over a substrate. A first metallic layer is formed over the dielectric layer. After the first metallic layer is formed, an annealing operation is performed, followed by a cooling operation. A second metallic layer is formed. After the cooling operation, the dielectric layer becomes a ferroelectric dielectric layer including an orthorhombic crystal phase.
    Type: Application
    Filed: February 19, 2021
    Publication date: June 10, 2021
    Inventors: Chun-Chieh LU, Cheng-Yi PENG, Chien-Hsing LEE, Ling-Yen YEH, Chih-Sheng CHANG, Carlos H. DIAZ
  • Publication number: 20210175129
    Abstract: A semiconductor device includes a first set of nanostructures stacked over a substrate in a vertical direction, and each of the first set of nanostructures includes a first end portion and a second end portion, and a first middle portion laterally between the first end portion and the second end portion. The first end portion and the second end portion are thicker than the first middle portion. The semiconductor device also includes a first plurality of semiconductor capping layers around the first middle portions of the first set of nanostructures, and a gate structure around the first plurality of semiconductor capping layers.
    Type: Application
    Filed: January 27, 2021
    Publication date: June 10, 2021
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Sai-Hooi YEONG, Bo-Feng YOUNG, Chi-On CHUI, Chih-Chieh YEH, Cheng-Hsien WU, Chih-Sheng CHANG, Tzu-Chiang CHEN, I-Sheng CHEN
  • Publication number: 20210159170
    Abstract: An interconnection structure includes a first interlayer dielectric layer, a first conductive line, a protection layer, a second interlayer dielectric layer, and a connection plug. The first conductive line is partially disposed in the first interlayer dielectric layer. The protection layer is disposed on the first conductive line and the first interlayer dielectric layer. The protection layer covers a top surface and a sidewall of the first conductive line. The protection layer includes a recess disposed corresponding to the first conductive line in a vertical direction. The second interlayer dielectric layer is disposed on the protection layer. The connection plug penetrates at least a part of the second interlayer dielectric layer and the protection layer for being connected with the first conductive line.
    Type: Application
    Filed: December 11, 2019
    Publication date: May 27, 2021
    Inventors: Min-Shiang Hsu, Yu-Han Tsai, Chih-Sheng Chang
  • Publication number: 20210151321
    Abstract: The present invention further provides a method for forming a semiconductor device, the method including: first, a target layer is provided, an etching stop layer is formed on the target layer, a top oxide layer is formed on the etching stop layer, afterwards, a first photoresist layer is formed on the top oxide layer, and a first etching process is then performed, to form a plurality of first trenches in the top oxide layer. Next, a second photoresist layer is formed on the top oxide layer, portion of the second photoresist layer fills in each first trench, a second etching process is then performed to form a plurality of second trenches in the top oxide layer, and using the remaining etching stop layer as a hard mask, a third etching process is performed to remove parts of the etching stop layer and parts of the target layer.
    Type: Application
    Filed: December 29, 2020
    Publication date: May 20, 2021
    Inventors: Ching-Chih Chang, Yuan-Fu Ko, Chih-Sheng Chang