Patents by Inventor Chih-Yu Chang

Chih-Yu Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11817489
    Abstract: Negative capacitance field-effect transistor (NCFET) and ferroelectric field-effect transistor (FE-FET) devices and methods of forming are provided. The gate dielectric stack includes a ferroelectric gate dielectric layer. An amorphous high-k dielectric layer and a dopant-source layer are deposited sequentially followed by a post-deposition anneal (PDA). The PDA converts the amorphous high-k layer to a polycrystalline high-k film with crystalline grains stabilized by the dopants in a crystal phase in which the high-k dielectric is a ferroelectric high-k dielectric. After the PDA, the remnant dopant-source layer may be removed. A gate electrode is formed over remnant dopant-source layer (if present) and the polycrystalline high-k film.
    Type: Grant
    Filed: November 8, 2021
    Date of Patent: November 14, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Te-Yang Lai, Chun-Yen Peng, Chih-Yu Chang, Bo-Feng Young, Sai-Hooi Yeong, Chi On Chui
  • Publication number: 20230345741
    Abstract: Memory devices and methods of forming the memory devices are disclosed herein. The memory devices include a resistive memory array including a first resistive memory cell, a staircase contact structure adjacent the resistive memory array, and an inter-metal dielectric layer over the staircase contact structure. The memory devices further include a first diode and a second diode over the inter-metal dielectric layer. The memory devices further include a first conductive via electrically coupling the first diode to a first resistor of the first resistive memory cell and a second conductive via electrically coupling the second diode to a second resistor of the first resistive memory cell.
    Type: Application
    Filed: June 29, 2023
    Publication date: October 26, 2023
    Inventors: Meng-Han Lin, Chih-Yu Chang, Han-Jong Chia, Sai-Hooi Yeong, Yu-Ming Lin
  • Publication number: 20230328997
    Abstract: The present disclosure, in some embodiments, relates to a ferroelectric memory device. The ferroelectric memory device includes a multi-layer stack disposed on a substrate. The multi-layer stack has a plurality of conductive layers and a plurality of dielectric layers stacked alternately. A channel layer penetrates through the plurality of conductive layers and the plurality of dielectric layers. A ferroelectric layer is disposed between the channel layer and both of the plurality of conductive layers and the plurality of dielectric layers. A plurality of oxygen scavenging layers are disposed along sidewalls of the plurality of conductive layer. The plurality of oxygen scavenging layers laterally separate the ferroelectric layer from the plurality of conductive layers.
    Type: Application
    Filed: June 16, 2023
    Publication date: October 12, 2023
    Inventors: Chun-Chieh Lu, Sai-Hooi Yeong, Bo-Feng Young, Yu-Ming Lin, Chih-Yu Chang
  • Patent number: 11784235
    Abstract: A negative capacitance semiconductor device includes a substrate. A dielectric layer is disposed over a portion of the substrate. A ferroelectric structure is disposed over the dielectric layer. Within the ferroelectric structure: a material composition of the ferroelectric structure varies as a function of a height within the ferroelectric structure. A gate electrode is disposed over the ferroelectric structure.
    Type: Grant
    Filed: May 27, 2022
    Date of Patent: October 10, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chi-Hsing Hsu, Sai-Hooi Yeong, Chih-Yu Chang, Ching-Wei Tsai, Kuan-Lun Cheng
  • Patent number: 11777031
    Abstract: The present disclosure provides a semiconductor device and a method for fabricating a semiconductor device. The semiconductor device includes a substrate, a metal gate layer over the substrate, a channel between a source region and a drain region in the substrate, and a ferroelectric layer, at least a portion of the ferroelectric layer is between the metal gate layer and the substrate, wherein the ferroelectric layer includes hafnium oxide-based material, the hafnium oxide-based material includes a first portion of hafnium oxide with orthorhombic phase, a second portion of hafnium oxide with monoclinic phase, and a third portion of the hafnium oxide with tetragonal phase, wherein a first volume of the first portion is greater than a second volume of the second portion, and the second volume of the second portion is greater than a third volume the third portion.
    Type: Grant
    Filed: February 21, 2022
    Date of Patent: October 3, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chun-Yen Peng, Chih-Yu Chang, Bo-Feng Young, Te-Yang Lai, Sai-Hooi Yeong, Chi On Chui
  • Publication number: 20230309315
    Abstract: A memory cell includes patterning a first trench extending through a first conductive line, depositing a memory film along sidewalls and a bottom surface of the first trench, depositing a channel layer over the memory film, the channel layer extending along the sidewalls and the bottom surface of the first trench, depositing a first dielectric layer over and contacting the channel layer to fill the first trench, patterning a first opening, wherein patterning the first opening comprises etching the first dielectric layer, depositing a gate dielectric layer in the first opening, and depositing a gate electrode over the gate dielectric layer and in the first opening, the gate electrode being surrounded by the gate dielectric layer.
    Type: Application
    Filed: June 1, 2023
    Publication date: September 28, 2023
    Inventors: Bo-Feng Young, Meng-Han Lin, Chih-Yu Chang, Sai-Hooi Yeong, Yu-Ming Lin
  • Publication number: 20230299198
    Abstract: The present disclosure relates a ferroelectric field-effect transistor (FeFET) device. The FeFET device includes a ferroelectric structure having a first side and a second side. A gate structure is disposed along the first side of the ferroelectric structure, and an oxide semiconductor is disposed along the second side of the ferroelectric structure. The oxide semiconductor has a first semiconductor type. A source region and a drain region are disposed on the oxide semiconductor. The gate structure is laterally between the source region and the drain region. A polarization enhancement structure is arranged on the oxide semiconductor between the source region and the drain region. The polarization enhancement structure includes a semiconductor material or an oxide semiconductor material having a second semiconductor type that is different than the first semiconductor type.
    Type: Application
    Filed: May 30, 2023
    Publication date: September 21, 2023
    Inventors: Chih-Yu Chang, Mauricio Manfrini, Hung Wei Li, Yu-Ming Lin
  • Patent number: 11764292
    Abstract: Circuit devices and methods of forming the same are provided. In one embodiment, a method includes receiving a workpiece that includes a substrate and a fin extending from the substrate, forming a first ferroelectric layer on the fin, forming a dummy gate structure over a channel region of the fin, forming a gate spacer over sidewalls of the dummy gate structure, forming an inter-level dielectric layer over the workpiece, removing the dummy gate structure to expose the first ferroelectric layer over the channel region of the fin, and forming a gate electrode over the exposed first ferroelectric layer over the channel region of the fin.
    Type: Grant
    Filed: March 21, 2022
    Date of Patent: September 19, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Bo-Feng Young, Chih-Yu Chang, Sai-Hooi Yeong, Chi On Chui, Chih-Hao Wang
  • Publication number: 20230282753
    Abstract: A semiconductor device includes a silicon germanium channel, a germanium-free interfacial layer, a high-k dielectric layer, and a metal gate electrode. The silicon germanium channel is over a substrate. The germanium-free interfacial layer is over the silicon germanium channel. The germanium-free interfacial layer is nitridated. The high-k dielectric layer is over the germanium-free interfacial layer. The metal gate electrode is over the high-k dielectric layer.
    Type: Application
    Filed: May 12, 2023
    Publication date: September 7, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Yu CHANG, Hsiang-Pi CHANG, Zi-Wei FANG
  • Patent number: 11729986
    Abstract: A ferroelectric memory device includes a multi-layer stack, a channel layer, a ferroelectric layer and oxygen scavenging layers. The multi-layer stack is disposed on a substrate and includes a plurality of conductive layers and a plurality of dielectric layers stacked alternately. The channel layer penetrates through the plurality of conductive layers and the plurality of dielectric layers. The ferroelectric layer is disposed between the channel layer and both of the plurality of conductive layers and the plurality of dielectric layers. The oxygen scavenging layers are disposed along sidewalls of the plurality of conductive layer. The plurality of oxygen scavenging layers laterally separate the ferroelectric layer from the plurality of conductive layers.
    Type: Grant
    Filed: December 10, 2020
    Date of Patent: August 15, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Chieh Lu, Sai-Hooi Yeong, Bo-Feng Young, Yu-Ming Lin, Chih-Yu Chang
  • Patent number: 11729997
    Abstract: Memory devices and methods of forming the memory devices are disclosed herein. The memory devices include a resistive memory array including a first resistive memory cell, a staircase contact structure adjacent the resistive memory array, and an inter-metal dielectric layer over the staircase contact structure. The memory devices further include a first diode and a second diode over the inter-metal dielectric layer. The memory devices further include a first conductive via electrically coupling the first diode to a first resistor of the first resistive memory cell and a second conductive via electrically coupling the second diode to a second resistor of the first resistive memory cell.
    Type: Grant
    Filed: April 13, 2021
    Date of Patent: August 15, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Meng-Han Lin, Chih-Yu Chang, Han-Jong Chia, Sai-Hooi Yeong, Yu-Ming Lin
  • Patent number: 11716856
    Abstract: A memory cell includes patterning a first trench extending through a first conductive line, depositing a memory film along sidewalls and a bottom surface of the first trench, depositing a channel layer over the memory film, the channel layer extending along the sidewalls and the bottom surface of the first trench, depositing a first dielectric layer over and contacting the channel layer to fill the first trench, patterning a first opening, wherein patterning the first opening comprises etching the first dielectric layer, depositing a gate dielectric layer in the first opening, and depositing a gate electrode over the gate dielectric layer and in the first opening, the gate electrode being surrounded by the gate dielectric layer.
    Type: Grant
    Filed: March 5, 2021
    Date of Patent: August 1, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Bo-Feng Young, Meng-Han Lin, Chih-Yu Chang, Sai-Hooi Yeong, Yu-Ming Lin
  • Patent number: 11705516
    Abstract: The present disclosure relates a ferroelectric field-effect transistor (FeFET) device. The FeFET device includes a ferroelectric structure having a first side and a second side. A gate structure is disposed along the first side of the ferroelectric structure, and an oxide semiconductor is disposed along the second side of the ferroelectric structure. The oxide semiconductor has a first semiconductor type. A source region and a drain region are disposed on the oxide semiconductor. The gate structure is laterally between the source region and the drain region. A polarization enhancement structure is arranged on the oxide semiconductor between the source region and the drain region. The polarization enhancement structure includes a semiconductor material or an oxide semiconductor material having a second semiconductor type that is different than the first semiconductor type.
    Type: Grant
    Filed: March 31, 2021
    Date of Patent: July 18, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Yu Chang, Mauricio Manfrini, Hung Wei Li, Yu-Ming Lin
  • Patent number: 11695073
    Abstract: A memory cell includes a thin film transistor over a semiconductor substrate. The thin film transistor comprising: a ferroelectric (FE) material contacting a word line, the FE material being a hafnium-comprising compound, and the hafnium-comprising compound comprising a rare earth metal; and an oxide semiconductor (OS) layer contacting a source line and a bit line, wherein the FE material is disposed between the OS layer and the word line.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: July 4, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun-Chieh Lu, Sai-Hooi Yeong, Bo-Feng Young, Yu-Ming Lin, Chih-Yu Chang
  • Patent number: 11688812
    Abstract: A method includes following steps. A silicon germanium layer is formed on a substrate. A surface layer of the silicon germanium layer is oxidized to form an interfacial layer comprising silicon oxide and germanium oxide. The interfacial layer is nitridated. A metal gate structure is formed over the nitridated interfacial layer.
    Type: Grant
    Filed: June 3, 2021
    Date of Patent: June 27, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Yu Chang, Hsiang-Pi Chang, Zi-Wei Fang
  • Publication number: 20230176645
    Abstract: A management circuit is coupled to multiple processor cores for performing current suppression. The management circuit includes a detection circuit and a throttle signal generator. The detection circuit is operative to receive an activity signal from each processor core, and estimate a total current consumed by the plurality of processor cores based on activity signals. The activity signal indicates a current index proportional to current consumption of the processor core in a given time period. The throttle signal generator is operative to assert or de-assert throttle signals to the processor cores, one processor core at a time, based on one or more metrics calculated from the total current.
    Type: Application
    Filed: July 16, 2022
    Publication date: June 8, 2023
    Inventors: Hung-Wei Wu, Chih-Yu Chang
  • Patent number: 11653500
    Abstract: A memory cell includes a transistor including a memory film extending along a word line; a channel layer extending along the memory film, wherein the memory film is between the channel layer and the word line; a source line extending along the memory film, wherein the memory film is between the source line and the word line; a first contact layer on the source line, wherein the first contact layer contacts the channel layer and the memory film; a bit line extending along the memory film, wherein the memory film is between the bit line and the word line; a second contact layer on the bit line, wherein the second contact layer contacts the channel layer and the memory film; and an isolation region between the source line and the bit line.
    Type: Grant
    Filed: December 17, 2020
    Date of Patent: May 16, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Yu Chang, Meng-Han Lin, Sai-Hooi Yeong, Bo-Feng Young, Yu-Ming Lin
  • Publication number: 20230050640
    Abstract: A method of characterizing a wide-bandgap semiconductor material is provided. A substrate is provided, which includes a layer stack of a conductive material layer, a dielectric material layer, and a wide-bandgap semiconductor material layer. A mercury probe is disposed on a top surface of the wide-bandgap semiconductor material layer. Alternating-current (AC) capacitance of the layer stack is determined as a function of a variable direct-current (DC) bias voltage across the conductive material layer and the wide-bandgap semiconductor material layer. A material property of the wide-bandgap semiconductor material layer is extracted from a profile of the AC capacitance as a function of the DC bias voltage.
    Type: Application
    Filed: January 6, 2022
    Publication date: February 16, 2023
    Inventors: Chih-Yu CHANG, Ken-Ichi GOTO, Yen-Chieh HUANG, Min-Kun DAI, Han-Ting TSAI, Sai-Hooi YEONG, Yu-Ming LIN, Chung-Te LIN
  • Patent number: 11568912
    Abstract: A memory cell includes a write bit line, a write transistor and a read transistor. The write transistor is coupled between the write bit line and a first node. The read transistor is coupled to the write transistor by the first node. The read transistor includes a ferroelectric layer. The write transistor is configured to set a stored data value of the memory cell by a write bit line signal that adjusts a polarization state of the read transistor. The polarization state corresponds to the stored data value.
    Type: Grant
    Filed: March 9, 2021
    Date of Patent: January 31, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Bo-Feng Young, Sai-Hooi Yeong, Chao-I Wu, Chih-Yu Chang, Yu-Ming Lin
  • Patent number: 11563079
    Abstract: A MIM structure and manufacturing method thereof are provided. The MIM structure includes a substrate having a first surface and a metallization structure over the substrate. The metallization structure includes a bottom electrode layer, a dielectric layer on the bottom electrode layer, a ferroelectric layer on the dielectric layer, a top electrode layer on the ferroelectric layer, a first contact electrically coupled to the top electrode layer, and a second contact penetrating the dielectric layer and the ferroelectric layer, electrically coupled to the bottom electrode layer.
    Type: Grant
    Filed: January 8, 2020
    Date of Patent: January 24, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Sai-Hooi Yeong, Chih-Yu Chang, Chun-Yen Peng, Chi On Chui