Patents by Inventor Christoph Schelling

Christoph Schelling has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10011479
    Abstract: For simplifying the manufacture of a MEMS structural component including a deflectable diaphragm which spans an opening in the rear side of the structural component, and including a fixed counter-element, which is provided with passage openings, the counter-element from the base substrate of the MEMS structural component is patterned and the deflectable diaphragm is implemented in a layered structure on the base substrate. These measures are intended to improve the diaphragm properties and reduce the overall height of the MEMS structural component.
    Type: Grant
    Filed: June 25, 2014
    Date of Patent: July 3, 2018
    Assignee: ROBERT BOSCH GMBH
    Inventors: Christoph Schelling, Yvonne Bergmann, Jochen Reinmuth
  • Patent number: 10000374
    Abstract: A layer material which is particularly suitable for the realization of self-supporting structural elements having an electrode in the layer structure of a MEMS component. The self-supporting structural element is at least partially made up of a silicon carbonitride (Si1-x-yCxNy)-based layer.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: June 19, 2018
    Assignee: ROBERT BOSCH GMBH
    Inventors: Christoph Schelling, Benedikt Stein, Michael Stumber
  • Publication number: 20180141803
    Abstract: A MEMS component including a first substrate having at least one first insulating layer and a first metallic coating on a first side; and including a second substrate having at least one second insulating layer and a second metallic coating on a second side, the second substrate including a micromechanical functional element, which is connected electroconductively to the second metallic layer. The first side and the second side are positioned on each other, the first insulating layer and the second insulating layer being interconnected, and the first metallic coating and the second metallic coating being interconnected. A method for manufacturing a MEMS component is also described.
    Type: Application
    Filed: November 9, 2017
    Publication date: May 24, 2018
    Inventor: Christoph Schelling
  • Patent number: 9936298
    Abstract: For a MEMS component, in the layer structure of which at least one sound-pressure-sensitive diaphragm element is formed, which spans an opening or cavity in the layer structure and the deflections of which are detected with the aid of at least one piezosensitive circuit element in the attachment area of the diaphragm element, design measures are provided, by which the stress distribution over the diaphragm surface may be influenced intentionally in the event of deflection of the diaphragm element. In particular, measures are provided, by which the mechanical stresses are intentionally introduced into predefined areas of the diaphragm element, to thus amplify the measuring signal. For this purpose, the diaphragm element includes at least one designated bending area, which is defined by the structuring of the diaphragm element and is more strongly deformed in the event of sound action than the adjoining diaphragm sections.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: April 3, 2018
    Assignee: ROBERT BOSCH GMBH
    Inventors: Thomas Buck, Fabian Purkl, Michael Stumber, Ricardo Ehrenpfordt, Rolf Scheben, Benedikt Stein, Christoph Schelling
  • Patent number: 9926188
    Abstract: A sensor unit including a first semiconductor component and a second semiconductor component, the first semiconductor component including a first substrate and a sensor structure. The second semiconductor component includes a second substrate, the first and second semiconductor components being connected to each other with the aid of a wafer connection, the sensor unit having a decoupling structure, which is configured in such a way that the sensor structure is decoupled thermally and/or mechanically from the second semiconductor component.
    Type: Grant
    Filed: February 5, 2015
    Date of Patent: March 27, 2018
    Assignee: ROBERT BOSCH GMBH
    Inventors: Johannes Classen, Torsten Kramer, Hubert Benzel, Jens Frey, Daniel Christoph Meisel, Christoph Schelling
  • Patent number: 9914636
    Abstract: A MEMS microphone component including at least one sound-pressure-sensitive diaphragm element is formed in the layer structure of the MEMS component, which spans an opening in the layer structure. The diaphragm element is attached via at least one column element in the central area of the opening to the layer structure of the component. The deflections of the diaphragm element are detected with the aid of at least one piezosensitive circuit element, which is implemented in the layer structure of the diaphragm element and is situated in the area of the attachment of the diaphragm element to the column element.
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: March 13, 2018
    Assignee: ROBERT BOSCH GMBH
    Inventors: Thomas Buck, Fabian Purkl, Michael Stumber, Rolf Scheben, Benedikt Stein, Christoph Schelling
  • Patent number: 9818792
    Abstract: An infrared sensor device includes a semiconductor substrate, at least one sensor element that is micromechanically formed in the semiconductor substrate, and at least one calibration element, which is micromechanically formed in the semiconductor substrate, for the sensor element. An absorber material is arranged on the semiconductor substrate in the area of the sensor element and the calibration element. One cavern each is formed in the semiconductor substrate substantially below the sensor element and substantially below the calibration element. The sensor element and the calibration element are thermally and electrically isolated from the rest of the semiconductor substrate by the caverns. The infrared sensor device has high sensitivity, calibration functionality for the sensor element, and a high signal-to-noise ratio.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: November 14, 2017
    Assignee: Robert Bosch GmbH
    Inventors: Ingo Herrmann, Edda Sommer, Christoph Schelling, Christian Rettig, Mirko Hattass
  • Patent number: 9788124
    Abstract: Measures are provided for increasing the resistance to compression of a component having a micromechanical microphone pattern. In particular, the robustness of the microphone pattern to highly dynamic pressure fluctuations is to be increased, without the microphone sensitivity, i.e. the microphone performance, being impaired. The microphone pattern of such a component is implemented in a layer construction on a semiconductor substrate and includes at least one acoustically active diaphragm, which spans a sound hole on the substrate backside, and a stationary acoustically penetrable counterelement having through hole openings, which is situated above/below the diaphragm in the layer construction. At least one outflow channel is developed which makes possible a rapid pressure equalization between the two sides of the diaphragm. In addition, at least one controllable closing element is provided, with which the at least one outflow channel is optionally able to be opened or closed.
    Type: Grant
    Filed: August 23, 2016
    Date of Patent: October 10, 2017
    Assignee: ROBERT BOSCH GMBH
    Inventors: Christoph Schelling, Stefan Singer, Jochen Zoellin
  • Patent number: 9780284
    Abstract: A micromechanical sensor device and a corresponding production method include a substrate that has a front and a rear and a plurality of pillars that are formed on the front of the substrate. On each pillar, a respective sensor element is formed, which has a greater lateral extent than the associated pillar. A cavity is provided laterally to the pillars beneath the sensor elements. The sensor elements are laterally spaced apart from each other by respective separating troughs and make electrical contact with a respective associated rear contact via the respective associated pillar.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: October 3, 2017
    Assignee: Robert Bosch GmbH
    Inventors: Georg Bischopink, Christoph Schelling
  • Publication number: 20170247246
    Abstract: A layer material which is particularly suitable for the realization of self-supporting structural elements having an electrode in the layer structure of a MEMS component. The self-supporting structural element is at least partially made up of a silicon carbonitride (Si1-x-yCxNy)-based layer.
    Type: Application
    Filed: June 23, 2015
    Publication date: August 31, 2017
    Inventors: Christoph Schelling, Benedikt Stein, Michael Stumber
  • Patent number: 9738509
    Abstract: A diaphragm structure of a micromechanical component includes: a diaphragm integrated via at least one spring element into a layered structure, the diaphragm spanning a cavern, so that at least one section of the diaphragm edge extends up to and beyond the edge area of the cavern; and an anchoring structure formed in the overlap area between the diaphragm and the cavern edge area. The anchoring structure includes at least one anchor element structured out of the layered structure above the cavern edge area, and one through opening for the anchor element formed in the edge area of the diaphragm, so that there is a clearance between the anchor element and the through opening which allows for a mechanical stress relaxation of the diaphragm.
    Type: Grant
    Filed: January 3, 2014
    Date of Patent: August 22, 2017
    Assignee: ROBERT BOSCH GMBH
    Inventors: Christoph Schelling, Jochen Zoellin
  • Publication number: 20170230756
    Abstract: A MEMS loudspeaker device and a corresponding manufacturing method are described. The MEMS loudspeaker device includes a first substrate having a first front side and a first rear side, which includes a first rear side cavity, which is at least partially covered by a sound generation device; a second substrate having a second front side and a second rear side, which includes a second rear side cavity, which is covered by a first perforated plate device; the second rear side being bonded to the first front side in such a way that the second rear side cavity is situated above the sound generation device; and a second perforated plate device, which is attached above the first perforated plate device; at least one of the first perforated plate device and of the second plate device being elastically deflectable in such a way that a passage of sound of the sound generation device may be modulated by an interaction of the first perforated plate device and the second perforated plate device.
    Type: Application
    Filed: February 7, 2017
    Publication date: August 10, 2017
    Inventors: Christoph Schelling, Thomas Northemann
  • Publication number: 20170203958
    Abstract: A sensor unit including a first semiconductor component and a second semiconductor component, the first semiconductor component including a first substrate and a sensor structure. The second semiconductor component includes a second substrate, the first and second semiconductor components being connected to each other with the aid of a wafer connection, the sensor unit having a decoupling structure, which is configured in such a way that the sensor structure is decoupled thermally and/or mechanically from the second semiconductor component.
    Type: Application
    Filed: February 5, 2015
    Publication date: July 20, 2017
    Inventors: Johannes CLASSEN, Torsten KRAMER, Hubert BENZEL, Jens FREY, Daniel Christoph MEISEL, Christoph SCHELLING
  • Patent number: 9632104
    Abstract: A sensor includes a body having a sensor surface and an oblique surface. A sensor element is arranged on the sensor surface and configured to pick up a direction component of a directional measurement variable. At least one contact-making surface configured to make contact with the sensor element is arranged on the oblique surface. The oblique surface is at an angle with respect to a lattice structure of carrier material of the sensor and is oriented in a different direction than the sensor surface.
    Type: Grant
    Filed: March 27, 2013
    Date of Patent: April 25, 2017
    Assignee: Robert Bosch GmbH
    Inventors: Hubert Benzel, Christoph Schelling
  • Patent number: 9621996
    Abstract: A micromechanical sound transducer system and a corresponding manufacturing method, in which the micromechanical sound transducer system includes a substrate having a front side and a back side, the substrate having a through opening extending between the back side and the front side, and a coil configuration on the front side having a coil axis, which runs essentially parallel to the front side, the coil configuration covering the through opening at least partially. Also provided is a magnet device, which is situated so as to allow for an axial magnetic flux to be generated through the coil configuration. The coil configuration has a winding device which has at least first winding sections made from at least one layer of a low-dimensional conductive material, the coil configuration being configured to inductively detect and/or generate sound.
    Type: Grant
    Filed: July 7, 2015
    Date of Patent: April 11, 2017
    Assignee: ROBERT BOSCH GMBH
    Inventors: Christoph Schelling, Michael Stumber, Benedikt Stein, Theresa Lutz, Rolf Scheben
  • Patent number: 9593012
    Abstract: A method for producing a micromechanical component includes providing a substrate with a monocrystalline starting layer which is exposed in structured regions. The structured regions have an upper face and lateral flanks, wherein a catalyst layer, which is suitable for promoting a silicon epitaxial growth of the exposed upper face of the structured monocrystalline starting layer, is provided on the upper face, and no catalyst layers are provided on the flanks. The method also includes carrying out a selective epitaxial growth process on the upper face of the monocrystalline starting layer using the catalyst layer in a reactive gas atmosphere in order to form a micromechanical functional layer.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: March 14, 2017
    Assignee: Robert Bosch GmbH
    Inventors: Friedjof Heuck, Christoph Schelling
  • Patent number: 9588005
    Abstract: Measures are described which simplify the functional testing of a component having an MEMS element provided with a pressure-sensitive sensor diaphragm, and which allow a self-calibration of the component even after it is already in place, i.e., following the end of the production process. The component has a housing, in which are situated at least one MEMS element having a pressure-sensitive sensor diaphragm and a switching arrangement for detecting the diaphragm deflections as measuring signals; an arrangement for analyzing the measuring signals; and an arrangement for the defined excitation of the sensor diaphragm. The housing has at least one pressure connection port. The arrangement for exciting the sensor diaphragm includes at least one selectively actuable actuator component for generating defined pressure pulses that act on the sensor diaphragm.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: March 7, 2017
    Assignee: ROBERT BOSCH GMBH
    Inventors: Jochen Zoellin, Ricardo Ehrenpfordt, Juergen Graf, Christoph Schelling, Frederik Ante, Michael Curcic
  • Patent number: 9571938
    Abstract: A capacitive MEMS microphone element is described which may be used optionally for detecting acoustic signals (microphone mode) or for detecting ultrasound signals in a defined frequency range (ultrasound mode). In the layered structure of the MEMS microphone element, at least two carrier elements for the two electrode sides of a capacitor system are formed one above the other and at a distance from one another for signal detection. At least one of the two carrier elements is sound pressure-sensitive and at least one of the two electrode sides includes at least two electrode segments which are electrically contactable independent of one another, which together with the at least one electrode of the other electrode side form partial capacitances which are independent of one another.
    Type: Grant
    Filed: December 3, 2014
    Date of Patent: February 14, 2017
    Assignee: ROBERT BOSCH GMBH
    Inventors: Christoph Schelling, Rolf Scheben, Ricardo Ehrenpfordt
  • Publication number: 20170038273
    Abstract: A device for detecting a parameter of a gas includes a body defining at least one cavity, at least one membrane, and at least one pressure measuring element. The cavity is configured to receive a gas from an outer area. The at least one membrane is configured to separate the cavity from the outer area. A first side of the at least one membrane facing toward the outer area includes a first layer of an electrically conductive material, and a second side of the at least one membrane facing toward the cavity and opposite the first side includes a second layer of the electrically conductive material. At least one portion of the at least one membrane includes an ion-conductive material. The at least one pressure measuring element is positioned on the at least one membrane, and is configured to detect a pressure of the gas in the cavity.
    Type: Application
    Filed: April 9, 2015
    Publication date: February 9, 2017
    Inventors: Andreas Krauss, Christoph Schelling
  • Publication number: 20170026754
    Abstract: For a MEMS component, in the layer structure of which at least one sound-pressure-sensitive diaphragm element is formed, which spans an opening or cavity in the layer structure and the deflections of which are detected with the aid of at least one piezosensitive circuit element in the attachment area of the diaphragm element, design measures are provided, by which the stress distribution over the diaphragm surface may be influenced intentionally in the event of deflection of the diaphragm element. In particular, measures are provided, by which the mechanical stresses are intentionally introduced into predefined areas of the diaphragm element, to thus amplify the measuring signal. For this purpose, the diaphragm element includes at least one designated bending area, which is defined by the structuring of the diaphragm element and is more strongly deformed in the event of sound action than the adjoining diaphragm sections.
    Type: Application
    Filed: July 15, 2016
    Publication date: January 26, 2017
    Inventors: Thomas Buck, Fabian Purkl, Michael Stumber, Ricardo Ehrenpfordt, Rolf Scheben, Benedikt Stein, Christoph Schelling