Patents by Inventor Chuang Wu

Chuang Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220384495
    Abstract: The present disclosure relates to a CMOS image sensor having a multiple deep trench isolation (MDTI) structure, and an associated method of formation. In some embodiments, the image sensor comprises a boundary deep trench isolation (BDTI) structure disposed at boundary regions of a pixel region surrounding a photodiode. The BDTI structure has a ring shape from a top view and two columns surrounding the photodiode with the first depth from a cross-sectional view. A multiple deep trench isolation (MDTI) structure is disposed at inner regions of the pixel region overlying the photodiode, the MDTI structure extending from the back-side of the substrate to a second depth within the substrate smaller than the first depth. The MDTI structure has three columns with the second depth between the two columns of the BDTI structure from the cross-sectional view. The MDTI structure is a continuous integral unit having a ring shape.
    Type: Application
    Filed: August 9, 2022
    Publication date: December 1, 2022
    Inventors: Wei Chuang Wu, Ching-Chun Wang, Dun-Nian Yaung, Feng-Chi Hung, Jen-Cheng Liu, Yen-Ting Chiang, Chun-Yuan Chen, Shen-Hui Hong
  • Publication number: 20220367537
    Abstract: Some embodiments are directed towards an image sensor device. A photodetector is disposed in a semiconductor substrate, and a transfer transistor is disposed over photodetector. The transfer transistor includes a transfer gate having a lateral portion extending over a frontside of the semiconductor substrate and a vertical portion extending to a first depth below the frontside of the semiconductor substrate. A gate dielectric separates the lateral portion and the vertical portion from the semiconductor substrate. A backside trench isolation structure extends from a backside of the semiconductor substrate to a second depth below the frontside of the semiconductor substrate. The backside trench isolation structure laterally surrounds the photodetector, and the second depth is less than the first depth such that a lowermost portion of the vertical portion of the transfer transistor has a vertical overlap with an uppermost portion of the backside trench isolation structure.
    Type: Application
    Filed: July 19, 2022
    Publication date: November 17, 2022
    Inventors: Feng-Chi Hung, Dun-Nian Yaung, Jen-Cheng Liu, Wei Chuang Wu, Yen-Yu Chen, Chih-Kuan Yu
  • Patent number: 11495630
    Abstract: The present disclosure relates to a CMOS image sensor having a multiple deep trench isolation (MDTI) structure, and an associated method of formation. In some embodiments, the image sensor comprises a plurality of pixel regions disposed within a substrate and respectively comprising a photodiode configured to receive radiation that enters the substrate from a back-side. A boundary deep trench isolation (BDTI) structure is disposed at boundary regions of the pixel regions surrounding the photodiode. The BDTI structure extends from the back-side of the substrate to a first depth within the substrate. A multiple deep trench isolation (MDTI) structure is disposed at inner regions of the pixel regions overlying the photodiode. The MDTI structure extends from the back-side of the substrate to a second depth within the substrate smaller than the first depth. The MDTI structure is a continuous integral unit having a ring shape.
    Type: Grant
    Filed: July 9, 2020
    Date of Patent: November 8, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wei Chuang Wu, Ching-Chun Wang, Dun-Nian Yaung, Feng-Chi Hung, Jen-Cheng Liu, Yen-Ting Chiang, Chun-Yuan Chen, Shen-Hui Hong
  • Publication number: 20220352223
    Abstract: In some embodiments, the present disclosure relates to a device having a semiconductor substrate including a frontside and a backside. On the frontside of the semiconductor substrate are a first source/drain region and a second source/drain region. A gate electrode is arranged on the frontside of the semiconductor substrate and includes a horizontal portion, a first vertical portion, and a second vertical portion. The horizontal portion is arranged over the frontside of the semiconductor substrate and between the first and second source/drain regions. The first vertical portion extends from the frontside towards the backside of the semiconductor substrate and contacts the horizontal portion of the gate electrode structure. The second vertical portion extends from the frontside towards the backside of the semiconductor substrate, contacts the horizontal portion of the gate electrode structure, and is separated from the first vertical portion by a channel region of the substrate.
    Type: Application
    Filed: July 15, 2022
    Publication date: November 3, 2022
    Inventors: Chun-Yuan Chen, Ching-Chun Wang, Hsiao-Hui Tseng, Jen-Cheng Liu, Jhy-Jyi Sze, Shyh-Fann Ting, Wei Chuang Wu, Yen-Ting Chiang, Chia Ching Liao, Yen-Yu Chen
  • Publication number: 20220352218
    Abstract: A semiconductor structure includes a semiconductor substrate, an interconnection structure, a color filter, and a first isolation structure. The semiconductor substrate includes a first surface and a second surface opposite to the first surface. The interconnection structure is disposed over the first surface, and the color filter is disposed over the second surface. The first isolation structure includes a bottom portion, an upper portion and a diffusion barrier layer surrounding a sidewall of the upper portion. A top surface of the upper portion of the first isolation structure extends into and is in contact with a dielectric layer of the interconnection structure.
    Type: Application
    Filed: July 18, 2022
    Publication date: November 3, 2022
    Inventors: YEN-TING CHIANG, CHUN-YUAN CHEN, HSIAO-HUI TSENG, SHENG-CHAN LI, YU-JEN WANG, WEI CHUANG WU, SHYH-FANN TING, JEN-CHENG LIU, DUN-NIAN YAUNG
  • Patent number: 11449960
    Abstract: A system processes images of documents, for example, identification documents. The system transforms an image of a document to generate an image that represent the document in a canonical form. For example, if the input image has a document that is tilted at an angle with respect to the sides of the image, the system modifies the orientation of the document to show the document having sides aligned with the sides of the image. The system stores user accounts that include user information including images. The system generates a graph of nodes that represent user accounts with edges determined based on similarity scores between user accounts. The system determines connected components of user accounts, such that each connected component represents user accounts that have a high likelihood of being duplicates.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: September 20, 2022
    Assignee: Uber Technologies, Inc.
    Inventors: Tao Luo, Chuang Wu, Jinxue Zhang, Xiaoxiang Ren, Chandan Sheth, Zihe Liu
  • Patent number: 11437420
    Abstract: Some embodiments are directed towards an image sensor device. A photodetector is disposed in a semiconductor substrate, and a transfer transistor is disposed over photodetector. The transfer transistor includes a transfer gate having a lateral portion extending over a frontside of the semiconductor substrate and a vertical portion extending to a first depth below the frontside of the semiconductor substrate. A gate dielectric separates the lateral portion and the vertical portion from the semiconductor substrate. A backside trench isolation structure extends from a backside of the semiconductor substrate to a second depth below the frontside of the semiconductor substrate. The backside trench isolation structure laterally surrounds the photodetector, and the second depth is less than the first depth such that a lowermost portion of the vertical portion of the transfer transistor has a vertical overlap with an uppermost portion of the backside trench isolation structure.
    Type: Grant
    Filed: January 3, 2020
    Date of Patent: September 6, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Feng-Chi Hung, Dun-Nian Yaung, Jen-Cheng Liu, Wei Chuang Wu, Yen-Yu Chen, Chih-Kuan Yu
  • Patent number: 11430823
    Abstract: A semiconductor image sensor device includes a semiconductor substrate, a radiation-sensing region, and a first isolation structure. The radiation-sensing region is in the semiconductor substrate. The first isolation structure is in the semiconductor substrate and adjacent to the radiation-sensing region. The first isolation structure includes a bottom isolation portion in the semiconductor substrate, an upper isolation portion in the semiconductor substrate, and a diffusion barrier layer surrounding a sidewall of the upper isolation portion.
    Type: Grant
    Filed: October 13, 2020
    Date of Patent: August 30, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Yen-Ting Chiang, Chun-Yuan Chen, Hsiao-Hui Tseng, Sheng-Chan Li, Yu-Jen Wang, Wei Chuang Wu, Shyh-Fann Ting, Jen-Cheng Liu, Dun-Nian Yaung
  • Patent number: 11404460
    Abstract: In some embodiments, the present disclosure relates to a device having a semiconductor substrate including a frontside and a backside. On the frontside of the semiconductor substrate are a first source/drain region and a second source/drain region. A gate electrode is arranged on the frontside of the semiconductor substrate and includes a horizontal portion, a first vertical portion, and a second vertical portion. The horizontal portion is arranged over the frontside of the semiconductor substrate and between the first and second source/drain regions. The first vertical portion extends from the frontside towards the backside of the semiconductor substrate and contacts the horizontal portion of the gate electrode structure. The second vertical portion extends from the frontside towards the backside of the semiconductor substrate, contacts the horizontal portion of the gate electrode structure, and is separated from the first vertical portion by a channel region of the substrate.
    Type: Grant
    Filed: January 7, 2020
    Date of Patent: August 2, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Yuan Chen, Ching-Chun Wang, Hsiao-Hui Tseng, Jen-Cheng Liu, Jhy-Jyi Sze, Shyh-Fann Ting, Wei Chuang Wu, Yen-Ting Chiang, Chia Ching Liao, Yen-Yu Chen
  • Patent number: 11342373
    Abstract: A method for manufacturing an image sensing device includes forming an interconnection layer over a front surface of a semiconductor substrate. A trench is formed to extend from a back surface of the semiconductor substrate. An etch stop layer is formed along the trench. A buffer layer is formed over the etch stop layer. An etch process is performed for etching the buffer layer. The buffer layer and the etch stop layer include different materials.
    Type: Grant
    Filed: April 8, 2020
    Date of Patent: May 24, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wei-Chuang Wu, Ming-Tsong Wang, Feng-Chi Hung, Ching-Chun Wang, Jen-Cheng Liu, Dun-Nian Yaung
  • Publication number: 20220084908
    Abstract: The present disclosure relates an integrated chip. The integrated chip includes a semiconductor device arranged along a first side of a semiconductor substrate. The semiconductor substrate has one or more sidewalls extending from the first side of the semiconductor substrate to an opposing second side of the semiconductor substrate. A dielectric liner lines the one or more sidewalls of the semiconductor substrate. A through-substrate-via (TSV) is arranged between the one or more sidewalls and is separated from the semiconductor substrate by the dielectric liner. The TSV has a first width at a first distance from the second side and a second width at a second distance from the second side.
    Type: Application
    Filed: February 17, 2021
    Publication date: March 17, 2022
    Inventors: Hung-Ling Shih, Wei Chuang Wu, Shih Kuang Yang, Hsing-Chih Lin, Jen-Cheng Liu
  • Patent number: 11211419
    Abstract: Various embodiments of the present application are directed towards image sensors including composite backside illuminated (CBSI) structures to enhance performance. In some embodiments, a first trench isolation structure extends into a backside of a substrate to a first depth and comprises a pair of first trench isolation segments. A photodetector is in the substrate, between and bordering the first trench isolation segments. A second trench isolation structure is between the first trench isolation segments and extends into the backside of the substrate to a second depth less than the first depth. The second trench isolation structure comprises a pair of second trench isolation segments. An absorption enhancement structure overlies the photodetector, between the second trench isolation segments, and is recessed into the backside of the semiconductor substrate. The absorption enhancement structure and the second trench isolation structure collectively define a CBSI structure.
    Type: Grant
    Filed: July 25, 2019
    Date of Patent: December 28, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wei Chuang Wu, Dun-Nian Yaung, Feng-Chi Hung, Jen-Cheng Liu, Jhy-Jyi Sze, Keng-Yu Chou, Yen-Ting Chiang, Ming-Hsien Yang, Chun-Yuan Chen
  • Publication number: 20210366956
    Abstract: Various embodiments of the present application are directed towards image sensors including composite backside illuminated (CBSI) structures to enhance performance. In some embodiments, a first trench isolation structure extends into a backside of a substrate to a first depth and comprises a pair of first trench isolation segments. A photodetector is in the substrate, between and bordering the first trench isolation segments. A second trench isolation structure is between the first trench isolation segments and extends into the backside of the substrate to a second depth less than the first depth. The second trench isolation structure comprises a pair of second trench isolation segments. An absorption enhancement structure overlies the photodetector, between the second trench isolation segments, and is recessed into the backside of the semiconductor substrate. The absorption enhancement structure and the second trench isolation structure collectively define a CBSI structure.
    Type: Application
    Filed: August 4, 2021
    Publication date: November 25, 2021
    Inventors: Wei Chuang Wu, Dun-Nian Yaung, Feng-Chi Hung, Jen-Cheng Liu, Jhy-Jyi Sze, Keng-Yu Chou, Yen-Ting Chiang, Ming-Hsien Yang, Chun-Yuan Chen
  • Publication number: 20210280620
    Abstract: In some embodiments, a pixel sensor is provided. The pixel sensor includes a first photodetector arranged in a semiconductor substrate. A second photodetector is arranged in the semiconductor substrate, where a first substantially straight line axis intersects a center point of the first photodetector and a center point of the second photodetector. A floating diffusion node is arranged in the semiconductor substrate at a point that is a substantially equal distance from the first photodetector and the second photodetector. A pick-up well contact region is arranged in the semiconductor substrate, where a second substantially straight line axis that is substantially perpendicular to the first substantially straight line axis intersects a center point of the floating diffusion node and a center point of the pick-up well contact region.
    Type: Application
    Filed: May 5, 2021
    Publication date: September 9, 2021
    Inventors: Seiji Takahashi, Chen-Jong Wang, Dun-Nian Yaung, Feng-Chi Hung, Feng-Jia Shiu, Jen-Cheng Liu, Jhy-Jyi Sze, Chun-Wei Chang, Wei-Cheng Hsu, Wei Chuang Wu, Yimin Huang
  • Publication number: 20210280630
    Abstract: A method of fabricating self-aligned grids in a BSI image sensor is provided. The method includes depositing a first dielectric layer over a back surface of a substrate that has a plurality of photodiodes formed therein, forming a grid of trenches, and filling in the trenches with dielectric material to create a trench isolation grid. Here, a trench passes through the first dielectric layer and extends into the substrate. The method further includes etching back dielectric material in the trenches to a level that is below an upper surface of the first dielectric layer to form recesses overlaying the trench isolation grid, and filling in the recesses with metallic material to create a metallic grid that is aligned with the trench isolation grid.
    Type: Application
    Filed: May 6, 2021
    Publication date: September 9, 2021
    Inventors: Tsun-Kai Tsao, Jiech-Fun Lu, Shih-Pei Chou, Wei Chuang Wu
  • Publication number: 20210210534
    Abstract: In some embodiments, the present disclosure relates to a device having a semiconductor substrate including a frontside and a backside. On the frontside of the semiconductor substrate are a first source/drain region and a second source/drain region. A gate electrode is arranged on the frontside of the semiconductor substrate and includes a horizontal portion, a first vertical portion, and a second vertical portion. The horizontal portion is arranged over the frontside of the semiconductor substrate and between the first and second source/drain regions. The first vertical portion extends from the frontside towards the backside of the semiconductor substrate and contacts the horizontal portion of the gate electrode structure. The second vertical portion extends from the frontside towards the backside of the semiconductor substrate, contacts the horizontal portion of the gate electrode structure, and is separated from the first vertical portion by a channel region of the substrate.
    Type: Application
    Filed: January 7, 2020
    Publication date: July 8, 2021
    Inventors: Chun-Yuan Chen, Ching-Chun Wang, Hsiao-Hui Tseng, Jen-Cheng Liu, Jhy-Jyi Sze, Shyh-Fann Ting, Wei Chuang Wu, Yen-Ting Chiang, Chia Ching Liao, Yen-Yu Chen
  • Publication number: 20210210532
    Abstract: Some embodiments are directed towards an image sensor device. A photodetector is disposed in a semiconductor substrate, and a transfer transistor is disposed over photodetector. The transfer transistor includes a transfer gate having a lateral portion extending over a frontside of the semiconductor substrate and a vertical portion extending to a first depth below the frontside of the semiconductor substrate. A gate dielectric separates the lateral portion and the vertical portion from the semiconductor substrate. A backside trench isolation structure extends from a backside of the semiconductor substrate to a second depth below the frontside of the semiconductor substrate. The backside trench isolation structure laterally surrounds the photodetector, and the second depth is less than the first depth such that a lowermost portion of the vertical portion of the transfer transistor has a vertical overlap with an uppermost portion of the backside trench isolation structure.
    Type: Application
    Filed: January 3, 2020
    Publication date: July 8, 2021
    Inventors: Feng-Chi Hung, Dun-Nian Yaung, Jen-Cheng Liu, Wei Chuang Wu, Yen-Yu Chen, Chih-Kuan Yu
  • Patent number: 11031434
    Abstract: A method of fabricating self-aligned grids in a BSI image sensor is provided. The method includes depositing a first dielectric layer over a back surface of a substrate that has a plurality of photodiodes formed therein, forming a grid of trenches, and filling in the trenches with dielectric material to create a trench isolation grid. Here, a trench passes through the first dielectric layer and extends into the substrate. The method further includes etching back dielectric material in the trenches to a level that is below an upper surface of the first dielectric layer to form recesses overlaying the trench isolation grid, and filling in the recesses with metallic material to create a metallic grid that is aligned with the trench isolation grid.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: June 8, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tsun-Kai Tsao, Jiech-Fun Lu, Shih-Pei Chou, Wei Chuang Wu
  • Patent number: 11004880
    Abstract: In some embodiments, a pixel sensor is provided. The pixel sensor includes a first photodetector arranged in a semiconductor substrate. A second photodetector is arranged in the semiconductor substrate, where a first substantially straight line axis intersects a center point of the first photodetector and a center point of the second photodetector. A floating diffusion node is arranged in the semiconductor substrate at a point that is a substantially equal distance from the first photodetector and the second photodetector. A pick-up well contact region is arranged in the semiconductor substrate, where a second substantially straight line axis that is substantially perpendicular to the first substantially straight line axis intersects a center point of the floating diffusion node and a center point of the pick-up well contact region.
    Type: Grant
    Filed: September 16, 2020
    Date of Patent: May 11, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Seiji Takahashi, Chen-Jong Wang, Dun-Nian Yaung, Feng-Chi Hung, Feng-Jia Shiu, Jen-Cheng Liu, Jhy-Jyi Sze, Chun-Wei Chang, Wei-Cheng Hsu, Wei Chuang Wu, Yimin Huang
  • Patent number: 10943940
    Abstract: Various structures of image sensors are disclosed, as well as methods of forming the image sensors. According to an embodiment, a structure comprises a substrate comprising photo diodes, an oxide layer on the substrate, recesses in the oxide layer and corresponding to the photo diodes, a reflective guide material on a sidewall of each of the recesses, and color filters each being disposed in a respective one of the recesses. The oxide layer and the reflective guide material form a grid among the color filters, and at least a portion of the oxide layer and a portion of the reflective guide material are disposed between neighboring color filters.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: March 9, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wei Chuang Wu, Jhy-Jyi Sze, Yu-Jen Wang, Yen-Chang Chu, Shyh-Fann Ting, Ching-Chun Wang