Patents by Inventor Cornelius Brown Peethala

Cornelius Brown Peethala has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11164815
    Abstract: Techniques to enable bottom barrier free interconnects without voids. In one aspect, a method of forming interconnects includes: forming metal lines embedded in a dielectric; depositing a sacrificial dielectric over the metal lines; patterning vias and trenches in the sacrificial dielectric down to the metal lines, with the trenches positioned over the vias; lining the vias and trenches with a barrier layer; depositing a conductor into the vias and trenches over the barrier layer to form the interconnects; forming a selective capping layer on the interconnects; removing the sacrificial dielectric in its entirety; and depositing an interlayer dielectric (ILD) to replace the sacrificial dielectric. An interconnect structure is also provided.
    Type: Grant
    Filed: September 28, 2019
    Date of Patent: November 2, 2021
    Assignee: International Business Machines Corporation
    Inventors: Kenneth Chun Kuen Cheng, Koichi Motoyama, Kisik Choi, Cornelius Brown Peethala, Hosadurga Shobha, Joe Lee
  • Patent number: 11164776
    Abstract: A method includes forming a metallic interconnect structure on a semiconductor substrate where the metallic interconnect structure comprises a plurality of metal lines with adjacent metal lines separated by a gap therebetween. The method further includes selectively depositing a first low-k dielectric material onto the semiconductor substrate and onto exposed surfaces of the metal lines of the metallic interconnect structure to form a barrier on at least the metal lines. The barrier is configured to minimize oxidation and diffusion of metal of the metal lines. The method also includes depositing a flowable second low-k dielectric material onto the semiconductor substrate to form a dielectric layer encapsulating the barrier and the metallic interconnect structure.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: November 2, 2021
    Assignee: International Business Machines Corporation
    Inventors: Son Nguyen, Takeshi Nogami, Thomas Jasper Haigh, Jr., Cornelius Brown Peethala, Matthew T. Shoudy
  • Publication number: 20210313228
    Abstract: A method is presented for forming a fully aligned via (FAV) structure. The method includes depositing a first dielectric adjacent a conductive material, forming a surface aligned monolayer (SAM) over the conductive material, the SAM defining a long chain SAM formed by a layer-by-layer growth technique, depositing a second dielectric over the SAM and the first dielectric, performing chemical mechanical polishing (CMP) to planarize the second dielectric, and etching the SAM to form the FAV structure.
    Type: Application
    Filed: April 1, 2020
    Publication date: October 7, 2021
    Inventors: Son Nguyen, Rudy J. Wojtecki, Noel Arellano, Alexander Edward Hess, Thomas Jasper Haigh, JR., Cornelius Brown Peethala, Balasubramanian S. Pranatharthi Haran
  • Publication number: 20210296118
    Abstract: A novel bevel etch sequence for embedded metal contamination removal from BEOL wafers is provided. In one aspect, a method of processing a wafer includes: performing a bevel dry etch to break up layers of contaminants with embedded metals which, post back-end-of line metallization, are deposited on a bevel of the wafer, which forms a damaged layer on surfaces of the wafer; and then performing a sequence of wet etches, following the bevel dry etch, to render the bevel of the wafer substantially free of contaminants, wherein the sequence of wet etches includes etching the damaged layer to undercut and lift-off any remaining contaminants. A wafer, processed in this manner, having a bevel that is substantially free of contaminants is also provided.
    Type: Application
    Filed: March 19, 2020
    Publication date: September 23, 2021
    Inventors: Devika Sil, Ashim Dutta, Yann Mignot, John Christopher Arnold, Daniel Charles Edelstein, Kedari Matam, Cornelius Brown Peethala
  • Patent number: 11101172
    Abstract: Techniques for dielectric damage-free interconnects are provided. In one aspect, a method for forming a Cu interconnect structure includes: forming a via and trench in a dielectric over a metal line M1; depositing a first barrier layer into the via and trench; removing the first barrier layer from the via and trench bottoms using neutral beam oxidation, and removing oxidized portions of the first barrier layer such that the first barrier layer remains along only sidewalls of the via and trench; depositing Cu into the via in direct contact with the metal line M1 to form a via V1; lining the trench with a second barrier layer; and depositing Cu into the trench to form a metal line M2. The second barrier layer can instead include Mn or optionally CuMn so as to further serve as a seed layer. A Cu interconnect structure is also provided.
    Type: Grant
    Filed: April 15, 2020
    Date of Patent: August 24, 2021
    Assignee: International Business Machines Corporation
    Inventors: Koichi Motoyama, Benjamin D. Briggs, Gangadhara Raja Muthinti, Cornelius Brown Peethala, Lawrence A. Clevenger
  • Publication number: 20210242077
    Abstract: Embodiments of the invention include a method of forming a multi-layer integrated circuit (IC) structure that includes forming a first dielectric layer from a first dielectric material. A first conductive interconnect is formed having a first conductive interconnect surface. The first conductive interconnect is positioned in a first portion of the first dielectric layer, and the first conductive interconnect surface has a first conductive interconnect surface area. A second conductive interconnect is formed having a second conductive interconnect surface. The second conductive interconnect is above the first conductive interconnect and positioned in a second portion of the first dielectric layer. The second conductive interconnect surface has a second conductive interconnect surface area that is less than a first conductive interconnect surface area of the first conductive interconnect.
    Type: Application
    Filed: January 30, 2020
    Publication date: August 5, 2021
    Inventors: Cornelius Brown Peethala, Hari Prasad Amanapu, Raghuveer Reddy Patlolla, Koichi Motoyama, Chih-Chao Yang
  • Publication number: 20210242216
    Abstract: Interconnect structures or memory structures are provided in the BEOL in which topography variation is reduced. Reduced topography variation is achieved by providing a structure that includes a first dielectric capping layer that has a planar topmost surface and/or a second dielectric capping layer that has a planar topmost surface. The first dielectric capping layer has a non-planar bottom surface that contacts both a recessed surface of an interconnect dielectric material layer and a planar topmost surface of at least one electrically conductive structure that is embedded in the interconnect dielectric material layer.
    Type: Application
    Filed: January 30, 2020
    Publication date: August 5, 2021
    Inventors: Chih-Chao Yang, Baozhen Li, Raghuveer Reddy Patlolla, Cornelius Brown Peethala
  • Publication number: 20210183627
    Abstract: An ion beam etching tool comprises a chuck configured to electrostatically receive a wafer; a plasma source configured to introduce an ion beam to the wafer; and a shield on the chuck and configured to shield the chuck from the ion beam. The shield comprises a material that is configured to be one of removable from the wafer or inert with regard to a semiconductor device on the wafer.
    Type: Application
    Filed: December 11, 2019
    Publication date: June 17, 2021
    Inventors: John Arnold, Donald Canaperi, Cornelius Brown Peethala, Daniel Charles Edelstein
  • Patent number: 11037795
    Abstract: Techniques for planarization of dielectric topography that stop in dielectric are provided. In one aspect, a method for planarization includes: depositing a first dielectric onto a wafer having a surface topography with peaks and valleys; depositing a second, different dielectric onto the first dielectric; and polishing the second dielectric down to the first dielectric to form a planar surface at an interface between the first dielectric and the second dielectric. Optionally, a follow-up CMP or etch can be performed using a ˜1:1 selective polish or etch to completely remove the second dielectric and an equivalent amount of the first dielectric to form a planar surface devoid of the peaks and valleys in the first dielectric. A device structure formed by the present techniques is also provided.
    Type: Grant
    Filed: August 2, 2019
    Date of Patent: June 15, 2021
    Assignee: International Business Machines Corporation
    Inventors: Hari Prasad Amanapu, Cornelius Brown Peethala, Iqbal Rashid Saraf, Raghuveer Reddy Patlolla, Chih-Chao Yang
  • Patent number: 11031339
    Abstract: Interconnect structures and processes of fabricating the interconnect structures generally includes a recessed metal conductor and a discontinuous capping layer thereon. The discontinuous “capped” metal interconnect structure provides improved performance and reliability for the semiconductor industry.
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: June 8, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Raghuveer R. Patlolla, Cornelius Brown Peethala, Chih-Chao Yang
  • Patent number: 11018087
    Abstract: Interconnect structures and processes of fabricating the interconnect structures generally includes a recessed metal conductor and a discontinuous capping layer thereon. The discontinuous “capped” metal interconnect structure provides improved performance and reliability for the semiconductor industry.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: May 25, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Raghuveer R. Patlolla, Cornelius Brown Peethala, Chih-Chao Yang
  • Publication number: 20210143061
    Abstract: A method for fabricating top-via interconnect structures includes forming a first dielectric layer on a substrate and an insulating layer on the first dielectric layer. At least one trench is formed that extends through the insulating layer and the first dielectric layer is also formed. An interconnect material is deposited and fills the at least one trench. The interconnect material is patterned into an interconnect structure having a top-via configuration. The insulating layer is removed after the interconnect material has been patterned. A second dielectric layer is formed on the first dielectric layer and the patterned interconnect structure.
    Type: Application
    Filed: November 7, 2019
    Publication date: May 13, 2021
    Inventors: Hari Prasad AMANAPU, Cornelius Brown PEETHALA, Raghuveer PATLOLLA, Chih-Chao YANG
  • Publication number: 20210111069
    Abstract: Embodiments of the present invention are directed to fabrication method and resulting structures for forming interconnects using a conductive spacer configured to prevent a short between a via and an adjacent line. In a non-limiting embodiment of the invention, a first conductive line and a second conductive line are formed in a metallization layer. A conductive spacer is formed on the first conductive line and a conductive via is formed on a surface of the conductive spacer. The conductive via is positioned such that the conductive spacer is between the first conductive line and the conductive via. A height of the conductive spacer is selected to provide a predetermined distance from the conductive via to the second conductive line. The predetermined distance from the conductive via to the second conductive line is sufficient to prevent a short between the conductive via and the second conductive line.
    Type: Application
    Filed: October 10, 2019
    Publication date: April 15, 2021
    Inventors: Koichi Motoyama, Cornelius Brown Peethala, Christopher J. Penny, Nicholas Anthony Lanzillo, Lawrence A. Clevenger
  • Patent number: 10978388
    Abstract: Semiconductor devices including skip via structures and methods of forming the skip via structure include interconnection between two interconnect levels that are separated by at least one other interconnect level, i.e., skip via to connect Mx and Mx+2 interconnect levels, wherein the intervening metallization level (MX+1) is electrically isolated from the skip via. Cap layers in the metallization levels are pre-patterned to provide openings therein generally corresponding to locations of the skip via structure prior to high aspect ratio etching to form the skip via structure.
    Type: Grant
    Filed: October 8, 2018
    Date of Patent: April 13, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hari Prasad Amanapu, Prasad Bhosale, Nicholas V. LiCausi, Lars W. Liebmann, James J. McMahon, Cornelius Brown Peethala, Michael Rizzolo
  • Publication number: 20210098292
    Abstract: A method includes forming a metallic interconnect structure on a semiconductor substrate where the metallic interconnect structure comprises a plurality of metal lines with adjacent metal lines separated by a gap therebetween. The method further includes selectively depositing a first low-k dielectric material onto the semiconductor substrate and onto exposed surfaces of the metal lines of the metal interconnect structure to form a barrier on at least the metal lines. The barrier is configured to minimize oxidation and diffusion of metal of the metal lines. The method also includes depositing a flowable second low-k dielectric material onto the semiconductor structure to form a dielectric layer encapsulating the barrier and the metallic interconnect structure.
    Type: Application
    Filed: September 30, 2019
    Publication date: April 1, 2021
    Inventors: Son Nguyen, Takeshi Nogami, Thomas Jasper Haigh, JR., Cornelius Brown Peethala, Matthew T. Shoudy
  • Publication number: 20210098388
    Abstract: Techniques to enable bottom barrier free interconnects without voids. In one aspect, a method of forming interconnects includes: forming metal lines embedded in a dielectric; depositing a sacrificial dielectric over the metal lines; patterning vias and trenches in the sacrificial dielectric down to the metal lines, with the trenches positioned over the vias; lining the vias and trenches with a barrier layer; depositing a conductor into the vias and trenches over the barrier layer to form the interconnects; forming a selective capping layer on the interconnects; removing the sacrificial dielectric in its entirety; and depositing an interlayer dielectric (ILD) to replace the sacrificial dielectric. An interconnect structure is also provided.
    Type: Application
    Filed: September 28, 2019
    Publication date: April 1, 2021
    Inventors: Kenneth Chun Kuen Cheng, Koichi Motoyama, Kisik Choi, Cornelius Brown Peethala, Hosadurga Shobha, Joe Lee
  • Patent number: 10957646
    Abstract: A semiconductor wafer has a top surface, a dielectric insulator, a plurality of narrow copper wires, a plurality of wide copper wires, an optical pass through layer over the top surface, and a self-aligned pattern in a photo-resist layer. The plurality of wide copper wires and the plurality of narrow copper wires are embedded in a dielectric insulator. The width of each wide copper wire is greater than the width of each narrow copper. An optical pass through layer is located over the top surface. A self-aligned pattern in a photo-resist layer, wherein photo-resist exists only in areas above the wide copper wires, is located above the optical pass through layer.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: March 23, 2021
    Assignee: International Business Machines Corporation
    Inventors: Benjamin D. Briggs, Cornelius Brown Peethala, Michael Rizzolo, Koichi Motoyama, Gen Tsutsui, Ruqiang Bao, Gangadhara Raja Muthinti, Lawrence A. Clevenger
  • Patent number: 10937653
    Abstract: A method for fabricating a semiconductor device integrating a multiple patterning scheme includes forming a memorization layer over a plurality of mandrels and a plurality of non-mandrels, and applying an exposure scheme to the memorization layer to form at least one mandrel cut pattern and at least one non-mandrel cut pattern.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: March 2, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hsueh-Chung Chen, Yongan Xu, Lawrence A. Clevenger, Yann Mignot, Cornelius Brown Peethala
  • Patent number: 10916431
    Abstract: Embodiments of the invention describe a method of forming an integrated circuit. The method includes forming an active semiconductor device region over a substrate. A first contact structure is formed over the active semiconductor device region, wherein the first contact structure includes a first contact liner material and a first contact body material. A conductive gate structure is formed over the active semiconductor device region, and a first gate cap material is formed on the conductive gate structure. The first contact liner material includes a first etch selectivity responsive to a first etch composition, the first contact body material includes a second etch selectivity responsive to the first etch composition, and the first gate cap material includes a third etch selectivity responsive to the first etch composition. The first etch selectivity is greater than each of the second and third etch selectivies.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: February 9, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Raghuveer Reddy Patlolla, Hari Prasad Amanapu, Vimal Kamineni, Sugirtha Krishnamurthy, Viraj Yashawant Sardesai, Cornelius Brown Peethala
  • Publication number: 20210035904
    Abstract: Chamfer-less via interconnects and techniques for fabrication thereof with a protective dielectric arch are provided. In one aspect, a method of forming an interconnect includes: forming metal lines in a first dielectric; depositing an etch stop liner onto the first dielectric; depositing a second dielectric on the etch stop liner; patterning vias and a trench in the second dielectric, wherein the vias are present over at least one of the metal lines, and wherein the patterning forms patterned portions of the second dielectric/etch stop liner over at least another one of the metal lines; forming a protective dielectric arch over the at least another one of the metal lines; and filling the vias/trench with a metal(s) to form the interconnect which, due to the protective dielectric arch, is in a non-contact position with the at least another one of the metal lines. An interconnect structure is also provided.
    Type: Application
    Filed: July 31, 2019
    Publication date: February 4, 2021
    Inventors: Lawrence A. Clevenger, Koichi Motoyama, Gangadhara Raja Muthinti, Cornelius Brown Peethala, Benjamin D. Briggs, Michael Rizzolo