Patents by Inventor Dan A. Marohl

Dan A. Marohl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200234920
    Abstract: An apparatus for processing substrates is provided. A plasma processing chamber is provided. At least one substrate support for supporting at least one substrate is in the plasma processing chamber. At least one gas inlet is provided for flowing gas into the plasma processing chamber. A dielectric window forms a cover for the plasma processing chamber. The dielectric window comprises an outer dielectric window ring with a central aperture and an inner concaved dielectric window extending across the central aperture, wherein the inner concaved dielectric window forms a volume in fluid communication with an interior of the plasma processing chamber, and wherein the at least one gas inlet flows gas into the volume of the inner concaved dielectric window. An outer coil assembly is adjacent to the outer dielectric window ring. An inner coil assembly surrounds the inner concaved dielectric window.
    Type: Application
    Filed: January 22, 2019
    Publication date: July 23, 2020
    Inventors: Shen PENG, Dan MAROHL, Ambarish CHHATRE, Ming-Te LIN, Andras KUTHI
  • Publication number: 20200152500
    Abstract: Implementations described herein provide a substrate support assembly which enables both lateral and azimuthal tuning of the heat transfer between an electrostatic chuck and a heating assembly. The substrate support assembly comprises a body having a substrate support surface and a lower surface, one or more main resistive heaters disposed in the body, a plurality of spatially tunable heaters disposed in the body, and a spatially tunable heater controller coupled to the plurality of spatially tunable heaters, the spatially tunable heater controller configured to independently control an output one of the plurality of spatially tunable heaters relative to another of the plurality of spatially tunable heaters.
    Type: Application
    Filed: January 13, 2020
    Publication date: May 14, 2020
    Inventors: Vijay D. PARKHE, Steven E. BABAYAN, Konstantin MAKHRATCHEV, Zhiqiang GUO, Phillip R. SOMMER, Dan A. MAROHL
  • Publication number: 20200051839
    Abstract: A substrate carrier is described that uses a proportional thermal fluid delivery system. In one example the apparatus includes a heat exchanger to provide a thermal fluid to a fluid channel of a substrate carrier and to receive the thermal fluid from the fluid channel, the thermal fluid in the fluid channel to control the temperature of the carrier during substrate processing. A proportional valve controls the rate of flow of thermal fluid from the heat exchanger to the fluid channel. A temperature controller receives a measured temperature from a thermal sensor of the carrier and controls the proportional valve in response to the measured temperature to adjust the rate of flow.
    Type: Application
    Filed: October 17, 2019
    Publication date: February 13, 2020
    Inventors: Phillip Criminale, Justin Phi, Dan A. Marohl, Sergio Fukuda Shoji, Brad L. Mays
  • Patent number: 10553398
    Abstract: Embodiments of inductively coupled plasma (ICP) reactors are provided herein. In some embodiments, a dielectric window for an inductively coupled plasma reactor includes: a body including a first side, a second side opposite the first side, an edge, and a center, wherein the dielectric window has a dielectric coefficient that varies spatially. In some embodiments, an apparatus for processing a substrate includes: a process chamber having a processing volume disposed beneath a lid of the process chamber; and one or more inductive coils disposed above the lid to inductively couple RF energy into and to form a plasma in the processing volume above a substrate support disposed within the processing volume; wherein the lid is a dielectric window comprising a first side and an opposing second side that faces the processing volume, and wherein the lid has a dielectric coefficient that spatially varies to provide a varied power coupling of RF energy from the one or more inductive coils to the processing volume.
    Type: Grant
    Filed: August 19, 2014
    Date of Patent: February 4, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Samer Banna, Tza-Jing Gung, Vladimir Knyazik, Kyle Tantiwong, Dan A. Marohl, Valentin N. Todorow, Stephen Yuen
  • Patent number: 10535544
    Abstract: Implementations described herein provide a substrate support assembly which enables both lateral and azimuthal tuning of the heat transfer between an electrostatic chuck and a heating assembly. The substrate support assembly comprises a body having a substrate support surface and a lower surface, one or more main resistive heaters disposed in the body, a plurality of spatially tunable heaters disposed in the body, and a spatially tunable heater controller coupled to the plurality of spatially tunable heaters, the spatially tunable heater controller configured to independently control an output one of the plurality of spatially tunable heaters relative to another of the plurality of spatially tunable heaters.
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: January 14, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Vijay D. Parkhe, Steven E. Babayan, Konstantin Makhratchev, Zhiqiang Guo, Phillip R. Sommer, Dan A. Marohl
  • Patent number: 10490429
    Abstract: A substrate carrier is described that uses a proportional thermal fluid delivery system. In one example the apparatus includes a heat exchanger to provide a thermal fluid to a fluid channel of a substrate carrier and to receive the thermal fluid from the fluid channel, the thermal fluid in the fluid channel to control the temperature of the carrier during substrate processing. A proportional valve controls the rate of flow of thermal fluid from the heat exchanger to the fluid channel. A temperature controller receives a measured temperature from a thermal sensor of the carrier and controls the proportional valve in response to the measured temperature to adjust the rate of flow.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: November 26, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Phillip Criminale, Justin Phi, Dan A. Marohl, Sergio Fukuda Shoji, Brad L. Mays
  • Publication number: 20190214236
    Abstract: A substrate support for a substrate processing chamber configured to implement a rapid alternating process includes a baseplate and a heating plate arranged on the baseplate. The heating plate includes a first zone including a first heating element configured to adjust a first temperature of the first zone of the heating plate and a second zone including a second heating element configured to adjust a second temperature of the second zone of the heating plate. A first thermally conductive bond layer is arranged between the heating plate and the baseplate. The first thermally conductive bond layer is configured to transfer heat from the heating plate to the baseplate during the rapid alternating process. The rapid alternating process includes a plurality of alternating deposition steps and etching steps.
    Type: Application
    Filed: January 10, 2018
    Publication date: July 11, 2019
    Inventors: Dan MAROHL, David Setton, Craig Rosslee, Gautam Bhattacharyya
  • Publication number: 20180366301
    Abstract: A coil portion is formed. A first articulation portion extends from the coil portion. A first mounting structure extends from the first articulation portion. The first mounting structure includes a first mounting region configured to mount in contact with a terminal of a first electrical component. The first articulation portion and the first mounting structure are configured to position the first mounting region at a location outside of a strong electromagnetic field emanating from the coil portion. A second articulation portion extends from the coil portion. A second mounting structure extends from the second articulation portion. The second mounting structure includes a second mounting region configured to mount in contact with a terminal of a second electrical component. The second articulation portion and the second mounting structure are configured to position the second mounting region at a location outside of the strong electromagnetic field emanating from the coil portion.
    Type: Application
    Filed: June 14, 2017
    Publication date: December 20, 2018
    Inventors: Oscar Lopez, Shen Peng, David Setton, Craig Rosslee, Dan Marohl, Andras Kuthi
  • Patent number: 10109460
    Abstract: A system is disclosed for measuring an impedance of a plasma processing chamber. The system includes a radiofrequency signal generator configured to output a radiofrequency signal based on a frequency setpoint and provide an indication of an actual frequency of the radiofrequency signal, where the actual frequency can be different than the frequency setpoint. The system includes an impedance control module including at least one variable impedance control device. A difference between the actual frequency of the radiofrequency signal as output by the radiofrequency signal generator and the frequency setpoint is partially dependent upon a setting of the at least one variable impedance control device and is partially dependent upon the impedance of the plasma processing chamber. The system includes a connector configured to connect with a radiofrequency signal supply line of the plasma processing chamber. The impedance control module is connected between the radiofrequency signal generator and the connector.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: October 23, 2018
    Assignee: Lam Research Corporation
    Inventors: Chin-Yi Liu, David Schaefer, Dan Marohl
  • Publication number: 20180160475
    Abstract: A method includes generating, based on a process recipe, a first electrical control signal by a processing device external to a particular radio frequency (RF) environment. The method further includes converting the first electrical control signal into an alternative control signal, transmitting the alternative control signal to a converter within the particular RF environment over a non-conductive communication link, and converting the alternative control signal into a second electrical control signal by the converter. The method further includes controlling a first plurality of elements via one or more switching devices using the second electrical control signal. The method further includes generating, based on the process recipe, a third signal by the processing device and controlling a second plurality of elements disposed outside of the RF environment using the third signal.
    Type: Application
    Filed: January 12, 2018
    Publication date: June 7, 2018
    Inventors: Phillip Criminale, Steve E. Babayan, Scott Edmonson, Phillip R. Sommer, Dan A. Marohl, Chris Blank
  • Publication number: 20180160474
    Abstract: A heating system includes a first plurality of heating elements disposed within an electrostatic chuck and an electrically conductive housing. The heating system further includes one or more switching devices to control temperatures output by the first plurality of heating elements. The heating system further includes a converter that is electrically coupled to the one or more switching devices and disposed within the electrically conductive housing. The electrically conductive housing and the first plurality of heating elements are to operate in a radio frequency (RF) environment. A second plurality of elements are to operate outside of the RF environment. The converter is to communicate with a controller outside of the RF environment via a non-conductive communication link. The controller is to receive a process recipe and is to control the first plurality of heating elements and the second plurality of elements substantially simultaneously based on the process recipe.
    Type: Application
    Filed: January 12, 2018
    Publication date: June 7, 2018
    Inventors: Phillip Criminale, Steve E. Babayan, Scott Edmonson, Phillip R. Sommer, Dan A. Marohl, Chris Blank
  • Publication number: 20180151331
    Abstract: A system is disclosed for measuring an impedance of a plasma processing chamber. The system includes a radiofrequency signal generator configured to output a radiofrequency signal based on a frequency setpoint and provide an indication of an actual frequency of the radiofrequency signal, where the actual frequency can be different than the frequency setpoint. The system includes an impedance control module including at least one variable impedance control device. A difference between the actual frequency of the radiofrequency signal as output by the radiofrequency signal generator and the frequency setpoint is partially dependent upon a setting of the at least one variable impedance control device and is partially dependent upon the impedance of the plasma processing chamber. The system includes a connector configured to connect with a radiofrequency signal supply line of the plasma processing chamber. The impedance control module is connected between the radiofrequency signal generator and the connector.
    Type: Application
    Filed: November 30, 2016
    Publication date: May 31, 2018
    Inventors: Chin-Yi Liu, David Schaefer, Dan Marohl
  • Publication number: 20180047543
    Abstract: A system is provided and includes a first linear motor, a first separator support assembly, and a controller. The first linear motor includes a shaft that is linearly driven based on a current supplied to the first linear motor. The first separator support assembly is configured to connect to the shaft of the first linear motor and to a rod of a first capacitor of a match network. The first linear motor is configured to actuate the rod to move a first electrode of the first capacitor relative to a second electrode of the first capacitor to change a capacitance of the first capacitor. The controller is connected to the first linear motor and is configured to adjust power supplied to a first radio frequency reactor coil of a plasma processing chamber by adjusting the current supplied to the first linear motor.
    Type: Application
    Filed: August 8, 2017
    Publication date: February 15, 2018
    Inventors: David Setton, Dan Marohl, Shen Peng, Gautam Bhattacharyya, Andras Kuthi
  • Patent number: 9872341
    Abstract: A system includes a plurality of elements that are to operate in a radio frequency (RF) environment. The system further includes a plurality of switching devices to operate in the RF environment, each of the plurality of switching devices to control power to at least one of the plurality of elements, wherein the plurality of switching devices are coupled to a power line that is to provide power from outside the RF environment. A filter is coupled to the power line to filter out RF noise introduced into the power line by the RF environment. The system further includes a converter, coupled to the one or more switching devices, to operate in the RF environment and to provide a non-conductive communication link between the one or more switching devices and a controller outside of the RF environment.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: January 16, 2018
    Assignee: Applied Materials, Inc.
    Inventors: Phillip Criminale, Steve E. Babayan, Scott Edmonson, Phillip R. Sommer, Dan A. Marohl, Chris Blank
  • Publication number: 20170278680
    Abstract: A substrate processing system includes a processing chamber including a dielectric window and a substrate support arranged therein to support a substrate. A coil is arranged outside of the processing chamber adjacent to the dielectric window. A Faraday shield is arranged between the coil and the dielectric window. An RF generator is configured to supply RF power to the coil. The faraday shield is coupled by stray capacitance and/or directly coupled to the Faraday shield. A capacitor is connected to one of the coil and the Faraday shield to adjust a position of a voltage standing wave along the coil.
    Type: Application
    Filed: March 23, 2017
    Publication date: September 28, 2017
    Inventors: Shen Peng, Tamarek Pandhumsoporn, Anthony Nguyen, Dan Marohl
  • Publication number: 20160329231
    Abstract: Implementations described herein provide a substrate support assembly which enables both lateral and azimuthal tuning of the heat transfer between an electrostatic chuck and a heating assembly. The substrate support assembly comprises a body having a substrate support surface and a lower surface, one or more main resistive heaters disposed in the body, a plurality of spatially tunable heaters disposed in the body, and a spatially tunable heater controller coupled to the plurality of spatially tunable heaters, the spatially tunable heater controller configured to independently control an output one of the plurality of spatially tunable heaters relative to another of the plurality of spatially tunable heaters.
    Type: Application
    Filed: July 18, 2016
    Publication date: November 10, 2016
    Inventors: Vijay D. PARKHE, Steven E. BABAYAN, Konstantin MAKHRATCHEV, Zhiqiang GUO, Phillip R. SOMMER, Dan A. MAROHL
  • Patent number: 9472435
    Abstract: Implementations described herein provide a substrate support assembly which enables both lateral and azimuthal tuning of the heat transfer between an electrostatic chuck and a heating assembly. The substrate support assembly comprises a body having a substrate support surface and a lower surface, one or more main resistive heaters disposed in the body, a plurality of spatially tunable heaters disposed in the body, and a spatially tunable heater controller coupled to the plurality of spatially tunable heaters, the spatially tunable heater controller configured to independently control an output one of the plurality of spatially tunable heaters relative to another of the plurality of spatially tunable heaters.
    Type: Grant
    Filed: May 20, 2015
    Date of Patent: October 18, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Vijay D. Parkhe, Steven E. Babayan, Konstantin Makhratchev, Zhiqiang Guo, Phillip R. Sommer, Dan A. Marohl
  • Publication number: 20160149482
    Abstract: A system includes a plurality of elements that are to operate in a radio frequency (RF) environment. The system further includes a plurality of switching devices to operate in the RF environment, each of the plurality of switching devices to control power to at least one of the plurality of elements, wherein the plurality of switching devices are coupled to a power line that is to provide power from outside the RF environment. A filter is coupled to the power line to filter out RF noise introduced into the power line by the RF environment. The system further includes a converter, coupled to the one or more switching devices, to operate in the RF environment and to provide a non-conductive communication link between the one or more switching devices and a controller outside of the RF environment.
    Type: Application
    Filed: November 26, 2014
    Publication date: May 26, 2016
    Inventors: Phillip Criminale, Steve E. Babayan, Scott Edmonson, Phillip R. Sommer, Dan A. Marohl, Chris Blank
  • Publication number: 20160149733
    Abstract: A system includes a processing device to generate a command, the command having a first format that is transmissible over a conductive communication link. The system further includes a first converter, coupled to the processing device, to receive the command and convert the command into a second format that is transmissible over a non-conductive communication link. The system further includes a second converter, configured to operate in a destructive radio frequency (RF) environment, to receive the command and convert the command back to the format that is transmissible over a conductive communication link and to subsequently transmit the command to a pulse width modulation (PWM) circuit. The PWM circuit is coupled to the second converter and configured to operate in the destructive RF environment, to adjust a setting used to control one or more elements that are to operate in the destructive RF environment based on the command.
    Type: Application
    Filed: November 26, 2014
    Publication date: May 26, 2016
    Inventors: Phillip Criminale, Steve E. Babayan, Dan A. Marohl
  • Publication number: 20160148822
    Abstract: A substrate carrier is described that uses a proportional thermal fluid delivery system In one example the apparatus includes a heat exchanger to provide a thermal fluid to a fluid channel of a substrate carrier and to receive the thermal fluid from the fluid channel, the thermal fluid in the fluid channel to control the temperature of the carrier during substrate processing. A proportional valve controls the rate of flow of thermal fluid from the heat exchanger to the fluid channel, A temperature controller receives a measured temperature from a thermal sensor of the carrier and controls the proportional valve in response to the measured temperature to adjust the rate of flow.
    Type: Application
    Filed: November 26, 2014
    Publication date: May 26, 2016
    Inventors: Phillip Criminale, Justin Phi, Dan A. Marohl, Sergio Fukuda Shoji, Brad L. Mays