Patents by Inventor Dan A. Marohl

Dan A. Marohl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6837964
    Abstract: A method and apparatus for supporting a web of polishing material are generally provided. In one embodiment, an apparatus for supporting a web of polishing material includes a web of polishing media having a first portion disposed across a support surface of a platen assembly and a second portion wound on a first roll coupled to the platen assembly. A tensioning mechanism is coupled to the platen assembly and adapted to tension the web of polishing media in response to a diameter of the second portion of the web of polishing material wound on the first roll.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: January 4, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Timothy J. Franklin, Dan A. Marohl
  • Publication number: 20040197179
    Abstract: A substrate handler is provided comprising a carriage positionable along a first axis of motion, a first substrate gripper coupled to the carriage and positionable relative to the carriage along a second axis of motion oriented substantially perpendicular to the first axis of motion, and a second substrate gripper coupled to the carriage and positionable relative to the carriage along a third axis of motion oriented substantially parallel to the second axis of motion, wherein the second gripper is independently movable relative to the first gripper.
    Type: Application
    Filed: April 3, 2003
    Publication date: October 7, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Younes Achkire, Dan Marohl, Lakshmanan Karuppiah
  • Publication number: 20040152403
    Abstract: A retaining ring has a generally annular body with a top surface, a bottom surface, an inner diameter surface, and an outer diameter surface. The outer diameter surface includes an outwardly projecting flange having a lower surface, and the bottom surface includes a plurality of channels.
    Type: Application
    Filed: September 8, 2003
    Publication date: August 5, 2004
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Dan A. Marohl, Ming-Kuei Tseng
  • Publication number: 20040084301
    Abstract: The present invention provides an electro-chemical deposition system that is designed with a flexible architecture that is expandable to accommodate future designs and gap fill requirements and provides satisfactory throughput to meet the demands of other processing systems. The electro-chemical deposition system generally comprises a mainframe having a mainframe wafer transfer robot, a loading station disposed in connection with the mainframe, one or more processing cells disposed in connection with the mainframe, and an electrolyte supply fluidly connected to the one or more electrical processing cells. Preferably, the electro-chemical deposition system includes a spin-rinse-dry (SRD) station disposed between the loading station and the mainframe, a rapid thermal anneal chamber attached to the loading station, and a system controller for controlling the electro-chemical deposition process and the components of the electro-chemical deposition system.
    Type: Application
    Filed: October 20, 2003
    Publication date: May 6, 2004
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Yezdi Dordi, Donald J. Olgado, Ratson Morad, Peter Hey, Mark Denome, Michael Sugarman, Mark Lloyd, Anna Marie Lloyd, Joseph Stevens, Dan Marohl, Ho Seon Shin, Eugene Ravinovich, Robin Cheung, Ashok K. Sinha, Avi Tepman, Dan Carl, George Birkmaier
  • Publication number: 20040031167
    Abstract: In one aspect, a method of drying a substrate includes (1) setting a gas delivery angle for an air knife used during an immersion-drying process; (2) using the air knife during immersion drying of a hydrophilic substrate; and (3) using the air knife during immersion drying of a hydrophobic substrate. The gas delivery angle is unchanged during immersion drying of both the hydrophilic substrate and hydrophobic substrate. Numerous other aspects are provided.
    Type: Application
    Filed: June 13, 2003
    Publication date: February 19, 2004
    Inventors: Nathan D. Stein, Younes Achkire, Timothy J. Franklin, Julia Svirchevski, Dan A. Marohl
  • Patent number: 6635157
    Abstract: The present invention provides an electro-chemical deposition system that is designed with a flexible architecture that is expandable to accommodate future designs and gap fill requirements and provides satisfactory throughput to meet the demands of other processing systems. The electro-chemical deposition system generally comprises a mainframe having a mainframe wafer transfer robot, a loading station disposed in connection with the mainframe, one or more processing cells disposed in connection with the mainframe, and an electrolyte supply fluidly connected to the one or more electrical processing cells. Preferably, the electro-chemical deposition system includes a spin-rinse-dry (SRD) station disposed between the loading station and the mainframe, a rapid thermal anneal chamber attached to the loading station, and a system controller for controlling the electro-chemical deposition process and the components of the electro-chemical deposition system.
    Type: Grant
    Filed: May 29, 2001
    Date of Patent: October 21, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Yezdi Dordi, Donald J. Olgado, Ratson Morad, Peter Hey, Mark Denome, Michael Sugarman, Mark Lloyd, Joseph Stevens, Dan Marohl, Ho Seon Shin, Eugene Ravinovich, Robin Cheung, Ashok K. Sinha, Avi Tepman, Dan Carl, George Birkmaier
  • Patent number: 6568896
    Abstract: A chamber for transferring a substrate is provided. In one embodiment, a chamber for transferring a substrate includes at least one side wall supporting a lid and coupled to a chamber bottom. The side wall, lid and chamber bottom defining an evacuable volume therebetween. A passage is disposed at least partially through the side wall and chamber bottom. The passage has a first end that is disposed in the side wall and is exposed to the evacuable volume. The passage has a second end that is disposed on an exterior side of the chamber bottom. The passage may be utilized as a pumping port when coupled to a pumping system at the second end of the passage. Additionally, the port may be utilized as a sensor housing to shield the sensor from objects within the transfer chamber.
    Type: Grant
    Filed: March 21, 2001
    Date of Patent: May 27, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Timothy J. Franklin, Dan A. Marohl
  • Publication number: 20030066604
    Abstract: A method and apparatus for supporting a web of polishing material are generally provided. In one embodiment, an apparatus for supporting a web of polishing material includes a web of polishing media having a first portion disposed across a support surface of a platen assembly and a second portion wound on a first roll coupled to the platen assembly. A tensioning mechanism is coupled to the platen assembly and adapted to tension the web of polishing media in response to a diameter of the second portion of the web of polishing material wound on the first roll.
    Type: Application
    Filed: November 12, 2002
    Publication date: April 10, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Timothy J. Franklin, Dan A. Marohl
  • Patent number: 6503131
    Abstract: Generally, a method and apparatus for supporting a web of polishing material. In one embodiment, the apparatus includes a platen and a blocker valve. The platen includes a support surface adapted to support the polishing material and a port fluidly coupled to the support surface. A housing that includes a supply port and an exit port has a venturi body disposed therein. The blocker valve has a first state whereby a flow through the housing and blocker valve causes vacuum to be drawn through the port disposed in the platen by the venturi body. In another embodiment, the flow through the venturi may be reversed by changing the state of the blocker valve to blow air through the port disposed in the platen, thereby placing the polishing material and the support surface of the platen in a spaced-apart relation.
    Type: Grant
    Filed: August 16, 2001
    Date of Patent: January 7, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Timothy J. Franklin, Dan A. Marohl
  • Publication number: 20020134506
    Abstract: A chamber for transferring a substrate is provided. In one embodiment, a chamber for transferring a substrate includes at least one side wall supporting a lid and coupled to a chamber bottom. The side wall, lid and chamber bottom defining an evacuable volume therebetween. A passage is disposed at least partially through the side wall and chamber bottom. The passage has a first end that is disposed in the side wall and is exposed to the evacuable volume. The passage has a second end that is disposed on an exterior side of the chamber bottom. The passage may be utilized as a pumping port when coupled to a pumping system at the second end of the passage. Additionally, the port may be utilized as a sensor housing to shield the sensor from objects within the transfer chamber.
    Type: Application
    Filed: March 21, 2001
    Publication date: September 26, 2002
    Applicant: Applied Materials, Inc.
    Inventors: Timothy J. Franklin, Dan A. Marohl
  • Patent number: 6409453
    Abstract: A vacuum processing system has one or more wafer handler with an end effector that, starting at its fixed end, tapers inwardly to form side recesses on opposing sides of the end effector and then tapers outwardly to a free end that is wider than the fixed end. At its free end, the end effector has another recess defining a pair of fingers with wafer supports thereon. The free end recess extends into the wafer sense cutout area. The pair of fingers providing the wafer supports at the free end of the end effector are spaced wider than the innermost exclusion zones for a standard 300 mm wafer carrier, but closer together than the outermost exclusion zones. In one embodiment, the end effector has a three-point ball, or bump, support for the wafer.
    Type: Grant
    Filed: June 6, 2000
    Date of Patent: June 25, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Jeff Brodine, Dan Marohl
  • Publication number: 20020029961
    Abstract: The present invention provides an electrochemical deposition system that is designed with a flexible architecture that is expandable to accommodate future designs and gap fill requirements and provides satisfactory throughput to meet the demands of other processing systems. The electrochemical deposition system generally comprises a mainframe having a mainframe wafer transfer robot, a loading station disposed in connection with the mainframe, one or more processing cells disposed in connection with the mainframe, and an electrolyte supply fluidly connected to the one or more electrical processing cells. Preferably, the electrochemical deposition system includes a spin-rinse-dry (SRD) station disposed between the loading station and the mainframe, a rapid thermal anneal chamber attached to the loading station, and a system controller for controlling the electrochemical deposition process and the components of the electrochemical deposition system.
    Type: Application
    Filed: May 29, 2001
    Publication date: March 14, 2002
    Applicant: Applied Materials, Inc.
    Inventors: Yezdi Dordi, Donald J. Olgado, Ratson Morad, Peter Hey, Mark Denome, Michael Sugarman, Mark Lloyd, Anna Marie Lloyd, Joseph Stevens, Dan Marohl, Ho Seon Shin, Eugene Ravinovich, Robin Cheung, Ashok K. Sinha, Avi Tepman, Dan Carl, George Birkmaier
  • Patent number: 6267423
    Abstract: An end effector for a transfer robot used in connection with the manufacture of semiconductor wafers is provided. The end effector is designed to handle very thin (0.005″-010″) semiconductor wafers which tend to bow during processing. The robot blade or end effector includes a deep pocket for receiving a bowed wafer. The depth of the pocket may be varied depending upon the degree of bowing in the wafers to be handled. Unlike ordinary wafer transfer devices, the present invention requires the wafer to be transferred with the surface bearing the devices facing down. The deep pocket allows the end effector to contact only the edges of the wafer, thus minimizing any defects across the wafer due to handling. The pocket opening is provided with arcuately shaped sloped wafer contact surfaces to prevent wafer sliding during robot movement.
    Type: Grant
    Filed: May 24, 2000
    Date of Patent: July 31, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Dan A. Marohl, Kenny King-Tai Ngan
  • Patent number: 6263587
    Abstract: An apparatus and method for clamping and heating a wafer without using moving parts and without exposing the wafer to external stress is provided. A high backside wafer pressure which provides efficient heat transfer from a heated substrate support to the wafer is offset by a high frontside wafer pressure higher than or lower than the backside wafer pressure. The high frontside pressure reduces wafer stress by providing a uniform frontside/backside pressure and presses the wafer against the heated substrate support. A continuous gas purge for providing a viscous flow across the wafer to carry away desorbed contaminants, and frontside heating elements for improving desorption are provided.
    Type: Grant
    Filed: July 10, 2000
    Date of Patent: July 24, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Ivo Raaijmakers, Dan Marohl
  • Patent number: 6258220
    Abstract: The present invention provides an electro-chemical deposition system that is designed with a flexible architecture that is expandable to accommodate future designs and gap fill requirements and provides satisfactory throughput to meet the demands of other processing systems. The electro-chemical deposition system generally comprises a mainframe having a mainframe wafer transfer robot, a loading station disposed in connection with the mainframe, one or more processing cells disposed in connection with the mainframe, and an electrolyte supply fluidly connected to the one or more electrical processing cells. Preferably, the electro-chemical deposition system includes a spin-rinse-dry (SRD) station disposed between the loading station and the mainframe, a rapid thermal anneal chamber attached to the loading station, and a system controller for controlling the electro-chemical deposition process and the components of the electro-chemical deposition system.
    Type: Grant
    Filed: April 8, 1999
    Date of Patent: July 10, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Yezdi Dordi, Donald J. Olgado, Ratson Morad, Peter Hey, Mark Denome, Michael Sugarman, Mark Lloyd, Joseph Stevens, Dan Marohl, Ho Seon Shin, Eugene Ravinovich, Robin Cheung, Ashok K. Sinha, Avi Tepman, Dan Carl, George Birkmaier
  • Patent number: 6182376
    Abstract: An apparatus and method is provided for capturing, heating and degassing a wafer without using moving parts and without exposing the wafer to external stress. A degassing chamber is backfilled with a dry gas that improves wafer heating ramp rates and wafer heating uniformity. The backfilled gas efficiently conducts heat at relatively low pressures. Thus the degassing chamber may be evacuated via a cryo-pump without the need for an intermediate rough pumping step. Further, because the wafer is heated primarily by conduction, wafer temperatures are easily and precisely controlled independent of layers previously deposited on the wafer. Frontside heating elements such as heat generators and/or heat reflectors are provided that further improve wafer heating ramp rates and wafer heating uniformity by directing heat toward the front surface of the wafer. Preferably as heat radiates from the wafer it is reflected back to the wafer by a frontside reflector.
    Type: Grant
    Filed: July 10, 1997
    Date of Patent: February 6, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Ho Seon Shin, Dan Marohl
  • Patent number: 6113698
    Abstract: An apparatus and method for clamping and heating a wafer without using moving parts and without exposing the wafer to external stress is provided. A high backside wafer pressure which provides efficient heat transfer from a heated substrate support to the wafer is offset by a high frontside wafer pressure higher than or lower than the backside wafer pressure. The high frontside pressure reduces wafer stress by providing a uniform frontside/backside pressure and presses the wafer against the heated substrate support. A continuous gas purge for providing a viscous flow across the wafer to carry away desorbed contaminants, and frontside heating elements for improving desorption are provided.
    Type: Grant
    Filed: July 10, 1997
    Date of Patent: September 5, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Ivo Raaijmakers, Dan Marohl
  • Patent number: 6034863
    Abstract: Apparatus for retaining a workpiece in a process chamber of a semiconductor wafer processing system. The apparatus has a thermal transfer element, an electrostatic chuck on top of the thermal transfers element and a clamping ring that secures the chuck to the thermal transfer element in a predefined orientation. The detachable, "keyed" chuck permits rapid exchange of wafer support platforms for increased productivity and consistent placement of same upon the thermal transfer element for reliable processing conditions.
    Type: Grant
    Filed: November 12, 1997
    Date of Patent: March 7, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Dan A. Marohl, Jeffrey A. Brodine, Tony P. Schiavo, Jr.
  • Patent number: 5964561
    Abstract: An improved apparatus and method is provided for storing semiconductor wafer carriers, and for loading wafers or wafer carriers to a fabrication tool. The apparatus comprises a plurality of storage locations positioned above the fabrication tool. The apparatus receives wafer carriers via a factory load port. The wafer carriers are transported between the factory load port and the storage locations via a first robot, and are transported between the fabrication tool load port and the storage locations via a second robot. Both robots access the respective load port from overhead, thus eliminating the need for a front loader robot, and reducing the apparatus' footprint. Each robot may access overhead factory transportation systems to provide further flexibility in wafer carrier transport. Additionally, the apparatus of the present invention may include a mechanism for opening pod type wafer carriers and for extracting wafers therefrom.
    Type: Grant
    Filed: December 11, 1996
    Date of Patent: October 12, 1999
    Assignee: Applied Materials, Inc.
    Inventor: Dan Marohl
  • Patent number: 5929373
    Abstract: A high voltage feed through supplies power to a device through a passage in a wall of a vacuum chamber. The feed through includes a ceramic body comprising a first brazing surface, a second brazing surface, and a central passage for a conductor, a power source connector brazed to the first brazing surface, and a mounting flange brazed to the second brazing surface, wherein the first and second brazing surfaces are positioned to reduce tensile forces on brazed connections. The brazing surfaces are preferably coplanar to reduce the tensile forces, or angled to place residual compressive forces on the brazed connections. The tensile forces on co-planar surfaces are further reduced by brazing ceramic rings to the power source connector and the mounting flange opposite brazed connections to the ceramic body of the feed through.
    Type: Grant
    Filed: June 23, 1997
    Date of Patent: July 27, 1999
    Assignee: Applied Materials, Inc.
    Inventors: Tony Schiavo, Jeff Brodine, Dan Marohl