Patents by Inventor Dan Millward

Dan Millward has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100323510
    Abstract: Some embodiments include methods of forming dispersions of nanoparticles. The nanoparticles are incorporated into first coordination complexes in which the nanoparticles are coordinated to hydrophobic ligands, and the first coordination complexes are dispersed within a non-polar solvent. While the first coordination complexes are within the non-polar solvent, the ligands are reacted with one or more reactants to convert the first coordination complexes into second coordination complexes that contain hydrophilic ligands. The second coordination complexes are then extracted from the non-polar solvent into water, to form a mixture of the second coordination complexes and the water. In some embodiments, the mixture may be dispersed across a semiconductor substrate to form a uniform distribution of the nanoparticles across the substrate. In some embodiments, the nanoparticles may then be incorporated into flash memory devices as charge-trapping centers.
    Type: Application
    Filed: August 30, 2010
    Publication date: December 23, 2010
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Dan Millward
  • Patent number: 7785998
    Abstract: Some embodiments include methods of forming dispersions of nanoparticles. The nanoparticles are incorporated into first coordination complexes in which the nanoparticles are coordinated to hydrophobic ligands, and the first coordination complexes are dispersed within a non-polar solvent. While the first coordination complexes are within the non-polar solvent, the ligands are reacted with one or more reactants to convert the first coordination complexes into second coordination complexes that contain hydrophilic ligands. The second coordination complexes are then extracted from the non-polar solvent into water, to form a mixture of the second coordination complexes and the water. In some embodiments, the mixture may be dispersed across a semiconductor substrate to form a uniform distribution of the nanoparticles across the substrate. In some embodiments, the nanoparticles may then be incorporated into flash memory devices as charge-trapping centers.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: August 31, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Dan Millward
  • Publication number: 20100170531
    Abstract: Some embodiments include methods of removing particles from over surfaces of semiconductor substrates. Liquid may be flowed across the surfaces and the particles. While the liquid is flowing, electrophoresis and/or electroosmosis may be utilized to enhance transport of the particles from the surfaces and into the liquid. In some embodiments, temperature, pH and/or ionic strength within the liquid may be altered to assist in the removal of the particles from over the surfaces of the substrates.
    Type: Application
    Filed: January 8, 2009
    Publication date: July 8, 2010
    Inventors: Neil Joseph Greeley, Dan Millward, Wayne Huang
  • Publication number: 20100137496
    Abstract: In one embodiment, a block copolymer-containing composition includes PS-b-PXVP and a lithium salt, where “X” is 2 or 4. All lithium salt is present in the composition at no greater than 1 ppm by weight. In one embodiment, a homogenous block copolymer-including comprising has PS-b-PXVP present in the composition at no less than 99.99998% by weight, where “X” is 2 or 4. Methods of forming such compositions are disclosed.
    Type: Application
    Filed: December 2, 2008
    Publication date: June 3, 2010
    Inventors: Dan Millward, Scott Sills
  • Publication number: 20100124826
    Abstract: Some embodiments include methods of utilizing block copolymer to form patterns between weirs. The methods may utilize liners along surfaces of the weirs to compensate for partial-width segments of the patterns in regions adjacent the weirs. Some embodiments include methods in which spaced apart structures are formed over a substrate, and outer surfaces of the structures are coated with a thickness of coating. Diblock copolymer is used to form a pattern across spaces between the structures. The diblock copolymer includes a pair of block constituents that have different affinities for the coating relative to one another. The pattern includes alternating segments, with the segments adjacent to the coating being shorter than the segments that are not adjacent to the coating. The coating thickness is about the amount by which the segments adjacent to the coating are shorter than the segments that are not adjacent to the coating.
    Type: Application
    Filed: November 17, 2008
    Publication date: May 20, 2010
    Inventors: Dan Millward, Stephen J. Kramer, Gurtej S. Sandhu
  • Publication number: 20100092873
    Abstract: Some embodiments include methods of forming patterns in which a block copolymer-containing composition is formed over a substrate, and is then patterned to form a first mask. The block copolymer of the composition is subsequently induced into forming a repeating pattern within the first mask. Portions of the repeating pattern are then removed to form a second mask from the first mask. The patterning of the block copolymer-containing composition may utilize photolithography. Alternatively, the substrate may have regions which wet differently relative to one another with respect to the block copolymer-containing composition, and the patterning of the first mask may utilize such differences in wetting in forming the first mask.
    Type: Application
    Filed: October 9, 2008
    Publication date: April 15, 2010
    Inventors: Scott Sills, Dan Millward
  • Publication number: 20090275199
    Abstract: The present invention provides metal-containing compounds that include at least one ?-diketiminate ligand, and methods of making and using the same. In some embodiments, the metal-containing compounds are homoleptic complexes that include unsymmetrical ?-diketiminate ligands. In other embodiments, the metal-containing compounds are heteroleptic complexes including at least one ?-diketiminate ligand. The compounds can be used to deposit metal-containing layers using vapor deposition methods. Vapor deposition systems including the compounds are also provided. Sources for ?-diketiminate ligands are also provided.
    Type: Application
    Filed: July 10, 2009
    Publication date: November 5, 2009
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Dan Millward, Stefan Uhlenbrock, Timothy A. Quick
  • Publication number: 20090215255
    Abstract: Some embodiments include methods of forming dispersions of nanoparticles. The nanoparticles are incorporated into first coordination complexes in which the nanoparticles are coordinated to hydrophobic ligands, and the first coordination complexes are dispersed within a non-polar solvent. While the first coordination complexes are within the non-polar solvent, the ligands are reacted with one or more reactants to convert the first coordination complexes into second coordination complexes that contain hydrophilic ligands. The second coordination complexes are then extracted from the non-polar solvent into water, to form a mixture of the second coordination complexes and the water. In some embodiments, the mixture may be dispersed across a semiconductor substrate to form a uniform distribution of the nanoparticles across the substrate. In some embodiments, the nanoparticles may then be incorporated into flash memory devices as charge-trapping centers.
    Type: Application
    Filed: February 21, 2008
    Publication date: August 27, 2009
    Inventor: Dan Millward
  • Patent number: 7572731
    Abstract: The present invention provides metal-containing compounds that include at least one ?-diketiminate ligand, and methods of making and using the same. In some embodiments, the metal-containing compounds are homoleptic complexes that include unsymmetrical ?-diketiminate ligands. In other embodiments, the metal-containing compounds are heteroleptic complexes including at least one ?-diketiminate ligand. The compounds can be used to deposit metal-containing layers using vapor deposition methods. Vapor deposition systems including the compounds are also provided. Sources for ?-diketiminate ligands are also provided.
    Type: Grant
    Filed: June 28, 2005
    Date of Patent: August 11, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Dan Millward, Stefan Uhlenbrock, Timothy A. Quick
  • Publication number: 20090075488
    Abstract: The present invention provides metal-containing compounds that include at least one ?-diketiminate ligand, and methods of making and using the same. In certain embodiments, the metal-containing compounds include at least one ?-diketiminate ligand with at least one fluorine-containing organic group as substituent. In other certain embodiments, the metal-containing compounds include at least one ?-diketiminate ligand with at least one aliphatic group as a substituent selected to have greater degrees of freedom than the corresponding substituent in the ?-diketiminate ligands of certain metal-containing compounds known in the art. The compounds can be used to deposit metal-containing layers using vapor deposition methods. Vapor deposition systems including the compounds are also provided. Sources for ?-diketiminate ligands are also provided.
    Type: Application
    Filed: October 7, 2008
    Publication date: March 19, 2009
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Dan Millward, Timothy A. Quick
  • Patent number: 7439338
    Abstract: The present invention provides metal-containing compounds that include at least one ?-diketiminate ligand, and methods of making and using the same. In certain embodiments, the metal-containing compounds include at least one ?-diketiminate ligand with at least one fluorine-containing organic group as a substituent. In other certain embodiments, the metal-containing compounds include at least one ?-diketiminate ligand with at least one aliphatic group as a substituent selected to have greater degrees of freedom than the corresponding substituent in the ?-diketiminate ligands of certain metal-containing compounds known in the art. The compounds can be used to deposit metal-containing layers using vapor deposition methods. Vapor deposition systems including the compounds are also provided. Sources for ?-diketiminate ligands are also provided.
    Type: Grant
    Filed: June 28, 2005
    Date of Patent: October 21, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Dan Millward, Timothy A. Quick
  • Publication number: 20080214001
    Abstract: The present invention provides metal-containing compounds that include at least one ?-diketiminate ligand, and methods of making and using the same. In some embodiments, the metal-containing compounds are homoleptic complexes that include unsymmetrical ?-diketiminate ligands. In other embodiments, the metal-containing compounds are heteroleptic complexes including at least one ?-diketiminate ligand. The compounds can be used to deposit metal-containing layers using vapor deposition methods. Vapor deposition systems including the compounds are also provided. Sources for ?-diketiminate ligands are also provided.
    Type: Application
    Filed: June 28, 2005
    Publication date: September 4, 2008
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Dan Millward, Stefan Uhlenbrock, Timothy Quick
  • Publication number: 20080064209
    Abstract: A method of forming (and an apparatus for forming) a metal containing layer on a substrate, particularly a semiconductor substrate or substrate assembly for use in manufacturing a semiconductor or memory device structure, using one or more homoleptic and/or heteroleptic precursor compounds that include, for example, guanidinate, phosphoguanidinate, isoureate, thioisoureate, and/or selenoisoureate ligands using a vapor deposition process is provided.
    Type: Application
    Filed: November 21, 2007
    Publication date: March 13, 2008
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Dan Millward
  • Publication number: 20060292303
    Abstract: The present invention provides metal-containing compounds that include at least one ?-diketiminate ligand, and methods of making and using the same. In certain embodiments, the metal-containing compounds include at least one ?-diketiminate ligand with at least one fluorine-containing organic group as a substituent. In other certain embodiments, the metal-containing compounds include at least one ?-diketiminate ligand with at least one aliphatic group as a substituent selected to have greater degrees of freedom than the corresponding substituent in the ?-diketiminate ligands of certain metal-containing compounds known in the art. The compounds can be used to deposit metal-containing layers using vapor deposition methods. Vapor deposition systems including the compounds are also provided. Sources for ?-diketiminate ligands are also provided.
    Type: Application
    Filed: June 28, 2005
    Publication date: December 28, 2006
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Dan Millward, Timothy Quick
  • Publication number: 20060292873
    Abstract: The present invention provides metal-containing compounds that include at least one ?-diketiminate ligand, and methods of making and using the same. In some embodiments, the metal-containing compounds are homoleptic complexes that include unsymmetrical ?-diketiminate ligands. In other embodiments, the metal-containing compounds are heteroleptic complexes including at least one ?-diketiminate ligand. The compounds can be used to deposit metal-containing layers using vapor deposition methods. Vapor deposition systems including the compounds are also provided. Sources for ?-diketiminate ligands are also provided.
    Type: Application
    Filed: June 28, 2005
    Publication date: December 28, 2006
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Dan Millward, Stefan Uhlenbrock, Timothy Quick
  • Publication number: 20060270223
    Abstract: A method of forming (and an apparatus for forming) a metal containing layer on a substrate, particularly a semiconductor substrate or substrate assembly for use in manufacturing a semiconductor or memory device structure, using one or more homoleptic and/or heteroleptic precursor compounds that include, for example, guanidinate, phosphoguanidinate, isoureate, thioisoureate, and/or selenoisoureate ligands using a vapor deposition process is provided.
    Type: Application
    Filed: July 28, 2006
    Publication date: November 30, 2006
    Applicant: Micron Technology, Inc.
    Inventor: Dan Millward
  • Publication number: 20060090648
    Abstract: This invention is directed to fabric finishes or treatment preparations for nylon, polyester, and other textile and fibrous substrate materials that will render them hydrophilic. The finishes of the invention are comprised primarily of polymers that contain carboxyl groups, salts of carboxyl groups, or moieties that can be converted to carboxyl groups by some chemical reaction.
    Type: Application
    Filed: May 1, 2002
    Publication date: May 4, 2006
    Inventors: David Soane, Dan Millward, Matthew Linford, Ryan Lau, Eric Green, William Ware
  • Publication number: 20060035462
    Abstract: A method of forming (and an apparatus for forming) a metal containing layer on a substrate, particularly a semiconductor substrate or substrate assembly for use in manufacturing a semiconductor or memory device structure, using one or more homoleptic and/or heteroleptic precursor compounds that include, for example, guanidinate, phosphoguanidinate, isoureate, thioisoureate, and/or selenoisoureate ligands using a vapor deposition process is provided.
    Type: Application
    Filed: August 13, 2004
    Publication date: February 16, 2006
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Dan Millward
  • Publication number: 20050183203
    Abstract: This invention is directed to fabric finishes or treatment preparations for nylon, polyester, and other textile and fibrous substrate materials that will render them hydrophilic. The finishes of the invention are comprised primarily of polymers that contain carboxyl groups, salts of carboxyl groups, or moieties that can be converted to carboxyl groups by some chemical reaction.
    Type: Application
    Filed: March 24, 2005
    Publication date: August 25, 2005
    Applicant: Nan-Tex, LLC
    Inventors: David Soane, Dan Millward, Matthew Linford, Ryan Lau, Eric Green, William Ware