Patents by Inventor Daniel C. Guterman

Daniel C. Guterman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8473813
    Abstract: A memory using techniques to extract the data content of its storage elements, when the distribution of stored states is degraded, is presented. If the distribution of stored states has degraded, secondary evaluations of the memory cells are performed using modified read conditions. Based upon the results of these supplemental evaluations, the memory device determines the read conditions at which to best decide the data stored.
    Type: Grant
    Filed: January 4, 2011
    Date of Patent: June 25, 2013
    Assignee: SanDisk Technologies Inc.
    Inventors: Carlos J. Gonzalez, Daniel C. Guterman
  • Patent number: 8103938
    Abstract: The quality of data stored in a memory system is assessed by different methods, and the memory system is operated according to the assessed quality. The data quality can be assessed during read operations. Subsequent use of an Error Correction Code can utilize the quality indications to detect and reconstruct the data with improved effectiveness. Alternatively, a statistics of data quality can be constructed and digital data values can be associated in a modified manner to prevent data corruption. In both cases the corrective actions can be implemented specifically on the poor quality data, according to suitably chosen schedules, and with improved effectiveness because of the knowledge provided by the quality indications. These methods can be especially useful in high-density memory systems constructed of multi-level storage memory cells.
    Type: Grant
    Filed: March 4, 2008
    Date of Patent: January 24, 2012
    Assignee: SanDisk Technologies Inc.
    Inventors: Daniel C. Guterman, Stephen Jeffrey Gross, Geoffrey S. Gongwer
  • Patent number: 8072817
    Abstract: Tracking cells are used in a memory system to improve the read process. The tracking cells can provide an indication of the quality of the data and can be used as part of a data recovery operation if there is an error. The tracking cells provide a means to adjust the read parameters to optimum levels in order to reflect the current conditions of the memory system. Read operations are performed on the tracking cells, where threshold voltages of physical states of the tracking cells are further apart than threshold voltages of physical states of non-tracking cells. Based on the read operations, an extent to which the tracking cells are errored is determined.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: December 6, 2011
    Assignee: SanDisk Technologies Inc.
    Inventors: Daniel C Guterman, Stephen J Gross, Shahzad Khalid, Geoffrey S Gongwer
  • Patent number: 8014197
    Abstract: A system and method for quickly and efficiently programming hard-to-program storage elements in non-volatile integrated memory devices is presented. A number of storage elements are simultaneously subjected to a programming process with the current flowing through the storage elements limited to a first level. As a portion of these storage elements reach a prescribed state, they are removed from the set of cells being programmed and the current limit on the elements that continue to be programmed is raised. The current level in these hard-to-program cells can be raised to a second, higher limit or unregulated. According to another aspect, during a program operation the current limit allowed for a cell depends upon the target state to which it is to be programmed.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: September 6, 2011
    Assignee: SanDisk Technologies Inc.
    Inventors: Nima Mokhlesi, Daniel C. Guterman
  • Publication number: 20110141816
    Abstract: Tracking cells are used in a memory system to improve the read process. The tracking cells can provide an indication of the quality of the data and can be used as part of a data recovery operation if there is an error. The tracking cells provide a means to adjust the read parameters to optimum levels in order to reflect the current conditions of the memory system. Read operations are performed on the tracking cells, where threshold voltages of physical states of the tracking cells are further apart than threshold voltages of physical states of non-tracking cells. Based on the read operations, an extent to which the tracking cells are errored is determined.
    Type: Application
    Filed: February 18, 2011
    Publication date: June 16, 2011
    Applicant: SANDISK CORPORATION
    Inventors: Daniel C. Guterman, Stephen J. Gross, Shahzad Khalid, Geoffrey S. Gongwer
  • Publication number: 20110099438
    Abstract: A memory using techniques to extract the data content of its storage elements, when the distribution of stored states is degraded, is presented. If the distribution of stored states has degraded, secondary evaluations of the memory cells are performed using modified read conditions. Based upon the results of these supplemental evaluations, the memory device determines the read conditions at which to best decide the data stored.
    Type: Application
    Filed: January 4, 2011
    Publication date: April 28, 2011
    Inventors: Carlos J. Gonzalez, Daniel C. Guterman
  • Patent number: 7916552
    Abstract: Tracking cells are used in a memory system to improve the read process. The tracking cells can provide an indication of the quality of the data and can be used as part of a data recovery operation if there is an error. The tracking cells provide a means to adjust the read parameters to optimum levels in order to reflect the current conditions of the memory system. Additionally, some memory systems that use multi-state memory cells will apply rotation data schemes to minimize wear. The rotation scheme can be encoded in the tracking cells based on the states of multiple tracking cells, which is decoded upon reading.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: March 29, 2011
    Assignee: SanDisk Corporation
    Inventors: Daniel C. Guterman, Stephen J. Gross, Shazad Khalid, Geoffrey S. Gongwer
  • Patent number: 7898868
    Abstract: Maximized multi-state compaction and more tolerance in memory state behavior is achieved through a flexible, self-consistent and self-adapting mode of detection, covering a wide dynamic range. For high density multi-state encoding, this approach borders on full analog treatment, dictating analog techniques including A to D type conversion to reconstruct and process the data. In accordance with the teachings of this invention, the memory array is read with high fidelity, not to provide actual final digital data, but rather to provide raw data accurately reflecting the analog storage state, which information is sent to a memory controller for analysis and detection of the actual final digital data.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: March 1, 2011
    Assignee: SanDisk Corporation
    Inventors: Daniel C. Guterman, Yupin Kawing Fong
  • Patent number: 7889560
    Abstract: A set of storage elements is programmed beginning with a word line WLn adjacent a select gate line for the set. After programming the first word line, the next word line WLn+1 adjacent to the first word line is skipped and the next word line WLn+2 adjacent to WLn+1 is programmed. WLn+1 is then programmed. Programming continues according to the sequence {WLn+4, WLn+3, WLn+6, WLn+5, . . . } until all but the last word line for the set have been programmed. The last word line is then programmed. By programming in this manner, some of the word lines of the set (WLn+1, WLn+3, etc.) have no subsequently programmed neighboring word lines. The memory cells of these word lines will not experience any floating gate to floating gate coupling threshold voltage shift impact due to subsequently programmed neighboring memory cells. The word lines having no subsequently programmed neighbors are read without using offsets or compensations based on neighboring memory cells.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: February 15, 2011
    Assignee: SanDisk Corporation
    Inventor: Daniel C Guterman
  • Patent number: 7886204
    Abstract: A memory using techniques to extract the data content of its storage elements, when the distribution of stored states is degraded, is presented. If the distribution of stored states has degraded, secondary evaluations of the memory cells are performed using modified read conditions. Based upon the results of these supplemental evaluations, the memory device determines the read conditions at which to best decide the data stored.
    Type: Grant
    Filed: September 27, 2006
    Date of Patent: February 8, 2011
    Assignee: SanDisk Corporation
    Inventors: Carlos J. Gonzalez, Daniel C. Guterman
  • Patent number: 7848149
    Abstract: Storage elements are read multiple times and the results are accumulated and averaged for each storage element to reduce the effects of noise or other transients in the storage elements and associated circuits that may adversely affect the quality of the read. Several techniques may be employed, including: A full read and transfer of the data from the storage device to the controller device for each iteration, with averaging performed by the controller; a full read of the data for each iteration, with the averaging performed by the storage device, and no transfer to the controller until the final results are obtained; one full read followed by a number of faster re-reads exploiting the already established state information to avoid a full read, followed by an intelligent algorithm to guide the state at which the storage element is sensed. These techniques may be used as the normal mode of operation, or invoked upon exception condition, depending on the system characteristics.
    Type: Grant
    Filed: February 12, 2007
    Date of Patent: December 7, 2010
    Assignee: SanDisk Corporation
    Inventors: Carlos J. Gonzalez, Daniel C. Guterman
  • Patent number: 7839685
    Abstract: Soft errors occur during normal use of a solid-state memory such as EEPROM or Flash EEPROM. A soft error results from the programmed threshold voltage of a memory cell being drifted from its originally intended level. The error is initially not readily detected during normal read until the cumulative drift becomes so severe that it develops into a hard error. Data could be lost if enough of these hard errors swamps available error correction codes in the memory. A memory device and techniques therefor are capable of detecting these drifts and substantially maintaining the threshold voltage of each memory cell to its intended level throughout the use of the memory device, thereby resisting the development of soft errors into hard errors.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: November 23, 2010
    Assignee: SanDisk Corporation
    Inventors: Daniel L. Auclair, Jeffrey Craig, John S. Mangan, Robert D. Norman, Daniel C. Guterman, Sanjay Mehrotra
  • Patent number: 7834392
    Abstract: Non-volatile memory cells store a level of charge corresponding to the data being stored in a dielectric material storage element that is sandwiched between a control gate and the semiconductor substrate surface over channel regions of the memory cells. More than two memory states are provided by one of more than two levels of charge being stored in a common region of the dielectric material. More than one such common region may be included in each cell. In one form, two such regions are provided adjacent source and drain diffusions in a cell that also includes a select transistor positioned between them. In another form, NAND arrays of strings of memory cells store charge in regions of a dielectric layer sandwiched between word lines and the semiconductor substrate.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: November 16, 2010
    Assignee: SanDisk Corporation
    Inventors: Eliyahou Harari, George Samachisa, Jack H. Yuan, Daniel C. Guterman
  • Patent number: 7821835
    Abstract: One embodiment of the present invention includes applying a first value to a bit line, boosting word lines associated with the bit line and a common selection line to create a first condition based on the first value, and cutting off a boundary non-volatile storage element associated with the common selection line to maintain the first condition for a particular non-volatile storage element associated with the bit line and common selection line. A second value is applied to the bit line and at least a subset of the word lines are boosted to create a second condition for a different non-volatile storage element associated with the bit line and common selection line. The second condition is based on the second value. The first condition and the second condition overlap in time. Both non-volatile storage elements are programmed concurrently, based on their associated conditions.
    Type: Grant
    Filed: November 7, 2007
    Date of Patent: October 26, 2010
    Assignee: SanDisk Corporation
    Inventor: Daniel C. Guterman
  • Patent number: 7796444
    Abstract: One embodiment of the present invention includes applying a first value to a bit line, boosting word lines associated with the bit line and a common selection line to create a first condition based on the first value, and cutting off a boundary non-volatile storage element associated with the common selection line to maintain the first condition for a particular non-volatile storage element associated with the bit line and common selection line. A second value is applied to the bit line and at least a subset of the word lines are boosted to create a second condition for a different non-volatile storage element associated with the bit line and common selection line. The second condition is based on the second value. The first condition and the second condition overlap in time. Both non-volatile storage elements are programmed concurrently, based on their associated conditions.
    Type: Grant
    Filed: November 7, 2007
    Date of Patent: September 14, 2010
    Assignee: SanDisk Corporation
    Inventor: Daniel C. Guterman
  • Publication number: 20100205360
    Abstract: A peripheral card having a Personal Computer (“PC”) card form factor and removably coupled externally to a host system is further partitioned into a mother card portion and a daughter card portion. The daughter card is removably coupled to the mother card. In the preferred embodiment, a low cost flash “floppy” is accomplished with the daughter card containing only flash EEPROM chips and being controlled by a memory controller residing on the mother card. Other aspects of the invention includes a comprehensive controller on the mother card able to control a predefined set of peripherals on daughter cards connectable to the mother card; relocation of some host resident hardware to the mother card to allow for a minimal host system; a mother card that can accommodate multiple daughter cards; daughter cards that also operates directly with hosts having embedded controllers; daughter cards carrying encoded data and information for decoding it; and daughter cards with security features.
    Type: Application
    Filed: April 22, 2010
    Publication date: August 12, 2010
    Inventors: Eliyahou Harari, Daniel C. Guterman, Robert F. Wallace
  • Publication number: 20100202199
    Abstract: Tracking cells are used in a memory system to improve the read process. The tracking cells can provide an indication of the quality of the data and can be used as part of a data recovery operation if there is an error. The tracking cells provide a means to adjust the read parameters to optimum levels in order to reflect the current conditions of the memory system. Additionally, some memory systems that use multi-state memory cells will apply rotation data schemes to minimize wear. The rotation scheme can be encoded in the tracking cells based on the states of multiple tracking cells, which is decoded upon reading.
    Type: Application
    Filed: April 20, 2010
    Publication date: August 12, 2010
    Inventors: Daniel C. Guterman, Stephen J. Gross, Shazad Khalid, Geoffrey S. Gongwer
  • Patent number: 7760555
    Abstract: Tracking cells are used in a memory system to improve the read process. The tracking cells can provide an indication of the quality of the data and can be used as part of a data recovery operation if there is an error. The tracking cells provide a means to adjust the read parameters to optimum levels in order to reflect the current conditions of the memory system. Additionally, some memory systems that use multi-state memory cells will apply rotation data schemes to minimize wear. The rotation scheme can be encoded in the tracking cells based on the states of multiple tracking cells, which is decoded upon reading.
    Type: Grant
    Filed: May 22, 2007
    Date of Patent: July 20, 2010
    Assignee: Sandisk Corporation
    Inventors: Daniel C. Guterman, Stephen J. Gross, Shahzad Khalid, Geoffrey S. Gongwer
  • Publication number: 20100169559
    Abstract: A peripheral card having a Personal Computer (“PC”) card form factor and removably coupled externally to a host system is further partitioned into a mother card portion and a daughter card portion. The daughter card is removably coupled to the mother card. In the preferred embodiment, a low cost flash “floppy” is accomplished with the daughter card containing only flash EEPROM chips and being controlled by a memory controller residing on the mother card. Other aspects of the invention includes a comprehensive controller on the mother card able to control a predefined set of peripherals on daughter cards connectable to the mother card; relocation of some host resident hardware to the mother card to allow for a minimal host system; a mother card that can accommodate multiple daughter cards; daughter cards that also operates directly with hosts having embedded controllers; daughter cards carrying encoded data and information for decoding it; and daughter cards with security features.
    Type: Application
    Filed: March 12, 2010
    Publication date: July 1, 2010
    Inventors: Eliyahou Harari, Daniel C. Guterman, Robert F. Wallace
  • Publication number: 20100169561
    Abstract: A peripheral card having a Personal Computer (“PC”) card form factor and removably coupled externally to a host system is further partitioned into a mother card portion and a daughter card portion. The daughter card is removably coupled to the mother card. In the preferred embodiment, a low cost flash “floppy” is accomplished with the daughter card containing only flash EEPROM chips and being controlled by a memory controller residing on the mother card. Other aspects of the invention includes a comprehensive controller on the mother card able to control a predefined set of peripherals on daughter cards connectable to the mother card; relocation of some host resident hardware to the mother card to allow for a minimal host system; a mother card that can accommodate multiple daughter cards; daughter cards that also operates directly with hosts having embedded controllers; daughter cards carrying encoded data and information for decoding it; and daughter cards with security features.
    Type: Application
    Filed: March 15, 2010
    Publication date: July 1, 2010
    Inventors: Eliyahou Harari, Daniel C. Guterman, Robert F. Wallace