Patents by Inventor Daniel C. Guterman

Daniel C. Guterman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080077841
    Abstract: A memory using techniques to extract the data content of its storage elements, when the distribution of stored states is degraded, is presented. If the distribution of stored states has degraded, secondary evaluations of the memory cells are performed using modified read conditions. Based upon the results of these supplemental evaluations, the memory device determines the read conditions at which to best decide the data stored.
    Type: Application
    Filed: September 27, 2006
    Publication date: March 27, 2008
    Inventors: Carlos J. Gonzalez, Daniel C. Guterman
  • Patent number: 7349260
    Abstract: A set of storage elements is programmed beginning with a word line WLn adjacent a select gate line for the set. After programming the first word line, the next word line WLn+1 adjacent to the first word line is skipped and the next word line WLn+2 adjacent to WLn+1 is programmed. WLn+1 is then programmed. Programming continues according to the sequence {WLn+4, WLn+3, WLn+6, WLn+5, . . . } until all but the last word line for the set have been programmed. The last word line is then programmed. By programming in this manner, some of the word lines of the set (WLn+1, WLn+3, etc.) have no subsequently programmed neighboring word lines. The memory cells of these word lines will not experience any floating gate to floating gate coupling threshold voltage shift impact due to subsequently programmed neighboring memory cells. The word lines having no subsequently programmed neighbors are read without using offsets or compensations based on neighboring memory cells.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: March 25, 2008
    Assignee: SanDisk Corporation
    Inventor: Daniel C. Guterman
  • Patent number: 7345934
    Abstract: Maximized multi-state compaction and more tolerance in memory state behavior is achieved through a flexible, self-consistent and self-adapting mode of detection, covering a wide dynamic range. For high density multi-state encoding, this approach borders on full analog treatment, dictating analog techniques including A to D type conversion to reconstruct and process the data. In accordance with the teachings of this invention, the memory array is read with high fidelity, not to provide actual final digital data, but rather to provide raw data accurately reflecting the analog storage state, which information is sent to a memory controller for analysis and detection of the actual final digital data.
    Type: Grant
    Filed: April 14, 2005
    Date of Patent: March 18, 2008
    Assignee: SanDisk Corporation
    Inventors: Daniel C. Guterman, Yupin Kawing Fong
  • Patent number: 7342279
    Abstract: Non-volatile memory cells store a level of charge corresponding to the data being stored in a dielectric material storage element that is sandwiched between a control gate and the semiconductor substrate surface over channel regions of the memory cells. More than two memory states are provided by one of more than two levels of charge being stored in a common region of the dielectric material. More than one such common region may be included in each cell. In one form, two such regions are provided adjacent source and drain diffusions in a cell that also includes a select transistor positioned between them. In another form, NAND arrays of strings of memory cells store charge in regions of a dielectric layer sandwiched between word lines and the semiconductor substrate.
    Type: Grant
    Filed: March 7, 2005
    Date of Patent: March 11, 2008
    Assignee: SanDisk Corporation
    Inventors: Eliyahou Harari, George Samachisa, Jack H. Yuan, Daniel C. Guterman
  • Patent number: 7341918
    Abstract: Non-volatile memory cells store a level of charge corresponding to the data being stored in a dielectric material storage element that is sandwiched between a control gate and the semiconductor substrate surface over channel regions of the memory cells. More than two memory states are provided by one of more than two levels of charge being stored in a common region of the dielectric material. More than one such common region may be included in each cell. In one form, two such regions are provided adjacent source and drain diffusions in a cell that also includes a select transistor positioned between them. In another form, NAND arrays of strings of memory cells store charge in regions of a dielectric layer sandwiched between word lines and the semiconductor substrate.
    Type: Grant
    Filed: March 7, 2005
    Date of Patent: March 11, 2008
    Assignee: SanDisk Corporation
    Inventors: Eliyahou Harari, George Samachisa, Jack H. Yuan, Daniel C. Guterman
  • Patent number: 7317638
    Abstract: A non-volatile memory device is programmed by first performing a coarse programming process and subsequently performing a fine programming process. The coarse/fine programming methodology is enhanced by using an efficient verification scheme that allows some non-volatile memory cells to be verified for the coarse programming process while other non-volatile memory cells are verified for the fine programming process. The fine programming process can be accomplished using current sinking, charge packet metering or other suitable means.
    Type: Grant
    Filed: October 18, 2006
    Date of Patent: January 8, 2008
    Assignee: Sandisk Corporation
    Inventors: Daniel C. Guterman, Nima Mokhlesi, Yupin Fong
  • Patent number: 7307884
    Abstract: One embodiment of the present invention includes applying a first value to a bit line, boosting word lines associated with the bit line and a common selection line to create a first condition based on the first value, and cutting off a boundary non-volatile storage element associated with the common selection line to maintain the first condition for a particular non-volatile storage element associated with the bit line and common selection line. A second value is applied to the bit line and at least a subset of the word lines are boosted to create a second condition for a different non-volatile storage element associated with the bit line and common selection line. The second condition is based on the second value. The first condition and the second condition overlap in time. Both non-volatile storage elements are programmed concurrently, based on their associated conditions.
    Type: Grant
    Filed: June 15, 2004
    Date of Patent: December 11, 2007
    Assignee: Sandisk Corporation
    Inventor: Daniel C. Guterman
  • Patent number: 7301812
    Abstract: A system is disclosed for programming non-volatile memory with greater precision. In one embodiment, the system includes applying a first phase of a boosting signal to one or more unselected word lines for a set of NAND strings, applying a programming level to selected bit lines of the NAND strings while applying the first phase of the boosting signal, and applying an inhibit level to unselected bit lines of the NAND strings while applying the first phase of the boosting signal. Subsequently, a second phase of the boosting signal is applied to the one or more unselected word lines and the signal(s) on the selected bit lines are changed by applying the inhibit level to the selected bit lines so that NAND strings associated with the selected bit lines will be boosted by the second phase of the boosting signal. A program voltage signal is applied to a selected word line in order to program storage elements connected to the selected word line.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: November 27, 2007
    Assignee: Sandisk Corporation
    Inventors: Daniel C. Guterman, Nima Mokhlesi, Yupin Fong
  • Patent number: 7301807
    Abstract: The present invention presents several techniques for using writable tracking cells. Multiple tracking cells are provided for each write block of the memory. These cells are re-programmed each time the user cells of the associated write block are written, preferably at the same time, using the same fixed, global reference levels to set the tracking and user cell programmed thresholds. The threshold voltages of the tracking cells are read every time the user cells are read, and these thresholds are used to determine the stored logic levels of the user cells. In one set of embodiments, populations of one or more tracking cells are associated with different logic levels of a multi-state memory. These tracking cell populations may be provided for only a subset of the logic levels. The read points for translating the threshold voltages are derived for all of the logic levels based upon this subset.
    Type: Grant
    Filed: February 22, 2005
    Date of Patent: November 27, 2007
    Assignee: SanDisk Corporation
    Inventors: Shahzad B. Khalid, Daniel C. Guterman, Geoffrey S. Gongwer, Richard Simko, Kevin M. Conley
  • Patent number: 7289360
    Abstract: Maximized multi-state compaction and more tolerance in memory state behavior is achieved through a flexible, self-consistent and self-adapting mode of detection, covering a wide dynamic range. For high density multi-state encoding, this approach borders on full analog treatment, dictating analog techniques including A to D type conversion to reconstruct and process the data. In accordance with the teachings of this invention, the memory array is read with high fidelity, not to provide actual final digital data, but rather to provide raw data accurately reflecting the analog storage state, which information is sent to a memory controller for analysis and detection of the actual final digital data.
    Type: Grant
    Filed: January 11, 2006
    Date of Patent: October 30, 2007
    Assignee: SanDisk Corporation
    Inventors: Daniel C. Guterman, Yupin Kawing Fong
  • Patent number: 7280408
    Abstract: In a system for programming non-volatile storage, technology is disclosed for programming with greater precision and reasonable program times. In one embodiment, a first voltage is applied to a bit line for a first non-volatile storage element in order to inhibit that first non-volatile storage element. A first program voltage is applied to the first non-volatile storage element. For example, a program pulse is applied to a control gate for the first non-volatile storage element. During the program pulse, the bit line is changed from said first voltage to a second voltage, where the second voltage allows the first non-volatile storage element to be programmed.
    Type: Grant
    Filed: August 18, 2005
    Date of Patent: October 9, 2007
    Assignee: Sandisk Corporation
    Inventors: Daniel C. Guterman, Nima Mokhlesi, Yupin Fong
  • Patent number: 7243275
    Abstract: A “smart verify” technique, whereby multi-state memories are programmed using a verify-results-based dynamic adjustment of the multi-states verify range for sequential-state-based verify implementations, is presented. This technique can increase multi-state write speed while maintaining reliable operation within sequentially verified, multi-state memory implementations by providing “intelligent” element to minimize the number of sequential verify operations for each program/verify/lockout step of the write sequence. At the beginning of a program/verify cycle sequence only the lowest state or states are checked during the verify phase. As lower states are reached, additional higher states are added to the verify sequence and lower states can be removed.
    Type: Grant
    Filed: December 14, 2005
    Date of Patent: July 10, 2007
    Assignee: SanDisk Corporation
    Inventors: Geoffrey S. Gongwer, Daniel C. Guterman, Yupin Kawing Fong
  • Patent number: 7237074
    Abstract: Tracking cells are used in a memory system to improve the read process. The tracking cells can provide an indication of the quality of the data and can be used as part of a data recovery operation if there is an error. The tracking cells provide a means to adjust the read parameters to optimum levels in order to reflect the current conditions of the memory system. Additionally, some memory systems that use multi-state memory cells will apply rotation data schemes to minimize wear. The rotation scheme can be encoded in the tracking cells based on the states of multiple tracking cells, which is decoded upon reading.
    Type: Grant
    Filed: June 13, 2003
    Date of Patent: June 26, 2007
    Assignee: Sandisk Corporation
    Inventors: Daniel C. Guterman, Stephen J. Gross, Shahzad Khalid, Geoffrey S. Gongwer
  • Patent number: 7230851
    Abstract: For a non-volatile memory system, compressing the erase threshold voltage distribution into the lowest threshold voltage state will decrease the valid data threshold voltage window. Decreasing the valid data threshold voltage window reduces the floating gate to floating gate coupling effect. The compression can be performed as part of the erase process or part of the programming operation.
    Type: Grant
    Filed: December 23, 2004
    Date of Patent: June 12, 2007
    Assignee: Sandisk Corporation
    Inventors: Yupin Fong, Daniel C. Guterman
  • Patent number: 7187592
    Abstract: Maximized multi-state compaction and more tolerance in memory state behavior is achieved through a flexible, self-consistent and self-adapting mode of detection, covering a wide dynamic range. For high density multi-state encoding, this approach borders on full analog treatment, dictating analog techniques including A to D type conversion to reconstruct and process the data. In accordance with the teachings of this invention, the memory array is read with high fidelity, not to provide actual final digital data, but rather to provide raw data accurately reflecting the analog storage state, which information is sent to a memory controller for analysis and detection of the actual final digital data.
    Type: Grant
    Filed: August 18, 2004
    Date of Patent: March 6, 2007
    Assignee: SanDisk Corporation
    Inventors: Daniel C. Guterman, Yupin Kawing Fong
  • Patent number: 7177195
    Abstract: Storage elements are read multiple times and the results are accumulated and averaged for each storage element to reduce the effects of noise or other transients in the storage elements and associated circuits that may adversely affect the quality of the read. Several techniques may be employed, including: A full read and transfer of the data from the storage device to the controller device for each iteration, with averaging performed by the controller; a full read of the data for each iteration, with the averaging performed by the storage device, and no transfer to the controller until the final results are obtained; one full read followed by a number of faster re-reads exploiting the already established state information to avoid a full read, followed by an intelligent algorithm to guide the state at which the storage element is sensed. These techniques may be used as the normal mode of operation, or invoked upon exception condition, depending on the system characteristics.
    Type: Grant
    Filed: July 27, 2005
    Date of Patent: February 13, 2007
    Assignee: SanDisk Corporation
    Inventors: Carlos J. Gonzalez, Daniel C. Guterman
  • Patent number: 7177199
    Abstract: The process for programming a set of memory cells is improved by adapting the programming process based on behavior of the memory cells. For example, a set of program pulses is applied to the word line for a set of flash memory cells. A determination is made as to which memory cells are easier to program and which memory cells are harder to program. Bit line voltages (or other parameters) can be adjusted based on the determination of which memory cells are easier to program and which memory cells are harder to program. The programming process will then continue with the adjusted bit line voltages (or other parameters).
    Type: Grant
    Filed: October 20, 2003
    Date of Patent: February 13, 2007
    Assignee: Sandisk Corporation
    Inventors: Jian Chen, Jeffrey W. Lutze, Yan Li, Daniel C. Guterman, Tomoharu Tanaka
  • Patent number: 7170793
    Abstract: A non-volatile memory system is programmed so as to reduce or avoid program disturb. In accordance with one embodiment, the storage elements of a NAND string are partitioned into at least two regions. A first boosting voltage is applied to the first region of the string while a second larger boosting voltage is applied to the second region. The first region includes the addressed row or selected word line for programming. The boosting voltages are applied to the NAND strings of a block while the NAND strings are being inhibited from programming. In this manner, the second boosting voltage can be made larger without inducing program disturb on the memory cells receiving the larger boosting voltage. The boosted voltage potentials of the NAND string channels are trapped within the first region by lowering the boosting voltage on one or more bounding rows. The second boosting voltage is then lowered and data is applied to the bit lines of the NAND strings to select the appropriate strings for programming.
    Type: Grant
    Filed: April 13, 2004
    Date of Patent: January 30, 2007
    Assignee: Sandisk Corporation
    Inventor: Daniel C. Guterman
  • Patent number: 7170782
    Abstract: An improved flash EEPROM memory-based storage subsystem includes one or more flash memory arrays, each with three data registers and a controller circuit. During a flash program operation, one data register is used to control the program operation, a second register is used to hold the target data value, and a third register is used to load the next sector's data. Subsequent to a flash program operation, a sector's data are read from a flash array into the first data register and compared to the target data stored in the second register. When the data is verified good, the data from the third register is copied into the first and second registers for the next program operation. This creates an improved performance system that doesn't suffer data transfer latency during program operations that require data verification after the program operation is complete. Alternate embodiments perform the comparison using two register implementations and a single register implementations.
    Type: Grant
    Filed: May 9, 2005
    Date of Patent: January 30, 2007
    Assignee: SanDisk Corporation
    Inventors: Kevin M. Conley, Daniel C. Guterman, Carlos J. Gonzalez
  • Patent number: 7145804
    Abstract: In a non-volatile memory, the displacement current generated in non-selected word lines that results when the voltage levels on an array's bit lines are changed can result in disturbs. Techniques for reducing these currents are presented. In a first aspect, the number of cells being simultaneously programmed on a word line is reduced. In a non-volatile memory where an array of memory cells is composed of a number of units, and the units are combined into planes that share common word lines, the simultaneous programming of units within the same plane is avoided. Multiple units may be programmed in parallel, but these are arranged to be in separate planes. This is done by selecting the number of units to be programmed in parallel and their order such that all the units programmed together are from distinct planes, by comparing the units to be programmed to see if any are from the same plane, or a combination of these.
    Type: Grant
    Filed: September 28, 2005
    Date of Patent: December 5, 2006
    Assignee: SanDisk Corporation
    Inventors: Daniel C. Guterman, George Samachisa, Brian Murphy, Chi-Ming Wang, Khandker N. Quader