Patents by Inventor David H. Levy

David H. Levy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11136667
    Abstract: A process for depositing a thin film material on a substrate is disclosed, comprising simultaneously directing a series of gas flows from the output face of a delivery head of a thin film deposition system toward the surface of a substrate, and wherein the series of gas flows comprises at least a first reactive gaseous material, an inert purge gas, and a second reactive gaseous material, wherein the first reactive gaseous material is capable of reacting with a substrate surface treated with the second reactive gaseous material, wherein one or more of the gas flows provides a pressure that at least contributes to the separation of the surface of the substrate from the face of the delivery head. A system capable of carrying out such a process is also disclosed.
    Type: Grant
    Filed: January 8, 2007
    Date of Patent: October 5, 2021
    Assignee: EASTMAN KODAK COMPANY
    Inventor: David H. Levy
  • Patent number: 10351954
    Abstract: A process for depositing a thin film material on a substrate is disclosed, comprising simultaneously directing a series of gas flows from the output face of a delivery head of a thin film deposition system toward the surface of a substrate, and wherein the series of gas flows comprises at least a first reactive gaseous material, an inert purge gas, and a second reactive gaseous material, wherein the first reactive gaseous material is capable of reacting with a substrate surface treated with the second reactive gaseous material, wherein one or more of the gas flows provides a pressure that at least contributes to the separation of the surface of the substrate from the face of the delivery head. A system capable of carrying out such a process is also disclosed.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: July 16, 2019
    Assignee: EASTMAN KODAK COMPANY
    Inventor: David H. Levy
  • Publication number: 20180148839
    Abstract: A process for depositing a thin film material on a substrate is disclosed, comprising simultaneously directing a series of gas flows from the output face of a delivery head of a thin film deposition system toward the surface of a substrate, and wherein the series of gas flows comprises at least a first reactive gaseous material, an inert purge gas, and a second reactive gaseous material, wherein the first reactive gaseous material is capable of reacting with a substrate surface treated with the second reactive gaseous material, wherein one or more of the gas flows provides a pressure that at least contributes to the separation of the surface of the substrate from the face of the delivery head. A system capable of carrying out such a process is also disclosed.
    Type: Application
    Filed: January 29, 2018
    Publication date: May 31, 2018
    Inventor: David H. Levy
  • Publication number: 20170029949
    Abstract: A process for depositing a thin film material on a substrate is disclosed, comprising simultaneously directing a series of gas flows from the output face of a delivery head of a thin film deposition system toward the surface of a substrate, and wherein the series of gas flows comprises at least a first reactive gaseous material, an inert purge gas, and a second reactive gaseous material, wherein the first reactive gaseous material is capable of reacting with a substrate surface treated with the second reactive gaseous material, wherein one or more of the gas flows provides a pressure that at least contributes to the separation of the surface of the substrate from the face of the delivery head. A system capable of carrying out such a process is also disclosed.
    Type: Application
    Filed: October 12, 2016
    Publication date: February 2, 2017
    Inventor: David H. Levy
  • Patent number: 9449824
    Abstract: A method for an improved doping process allows for improved control of doping concentrations on a substrate. The method may comprise printing a polymeric material on a substrate in a desired pattern; and depositing a barrier layer on the substrate with a liquid phase deposition process, wherein a pattern of the barrier layer is defined by the polymeric material. The method further comprises removing the polymeric material, and doping the substrate. The barrier layer substantially prevents or reduces doping of the substrate to allow patterned doping regions to be formed on the substrate. The method can be repeated to allow additional doping regions to be formed on the substrate.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: September 20, 2016
    Assignee: Natcore Technology, Inc.
    Inventors: David H. Levy, Daniele Margadonna, Dennis Flood, Wendy G. Ahearn, Richard W. Topel, Jr., Theodore Zubil
  • Patent number: 9236509
    Abstract: Systems and methods for producing nanoscale textured low reflectivity surfaces may be utilized to fabricate solar cells. A substrate may be patterned with a resist prior to an etching process that produces a nanoscale texture on the surface of the substrate. Additionally, the substrate may be subjected to a dopant diffusion process. Prior to dopant diffusion, the substrate may be optionally subjected to liquid phase deposition to deposit a material that allows for patterned doping. The order of the nanoscale texture etching and dopant diffusion may be modified as desired to produce post-nano emitters or pre-nano emitters.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: January 12, 2016
    Assignee: Natcore Technology, Inc.
    Inventors: David H. Levy, Daniele Margadonna, Dennis Flood, Wendy G. Ahearn, Richard W. Topel, Jr., Theodore Zubil
  • Publication number: 20150351998
    Abstract: A sexual stimulation device includes an elongated dildo housing sized to be received within an orifice of a human body, the housing defining an internal cavity extending along a longitudinal axis of the housing, a mass laterally constrained within the cavity and movable linearly along the cavity, and an electrically driven actuator disposed within the housing and operably coupled to the mass. The actuator is operable to accelerate the mass along the cavity and to thereby induce a longitudinal reactive acceleration of the housing.
    Type: Application
    Filed: August 17, 2015
    Publication date: December 10, 2015
    Inventor: David H. Levy
  • Patent number: 9107797
    Abstract: A sexual stimulation device includes an elongated dildo housing sized to be received within an orifice of a human body, the housing defining an internal cavity extending along a longitudinal axis of the housing, a mass laterally constrained within the cavity and movable linearly along the cavity, and an electrically driven actuator disposed within the housing and operably coupled to the mass. The actuator is operable to accelerate the mass along the cavity and to thereby induce a longitudinal reactive acceleration of the housing.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: August 18, 2015
    Assignee: Tricatalyst, LLC
    Inventor: David H. Levy
  • Patent number: 8927434
    Abstract: A method of producing a patterned inorganic thin film dielectric stack includes providing a substrate. A first patterned deposition inhibiting material layer is provided on the substrate. A first inorganic thin film dielectric material layer is selectively deposited on a region of the substrate where the first deposition inhibiting material layer is not present using an atomic layer deposition process. The first deposition inhibiting and first inorganic thin film dielectric material layers are simultaneously treated after deposition of the first inorganic thin film dielectric material layer. A second patterned deposition inhibiting material layer is provided on the substrate. A second inorganic thin film dielectric material layer is selectively deposited on a region of the substrate where the second deposition inhibiting material layer is not present using an atomic layer deposition process.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: January 6, 2015
    Assignee: Eastman Kodak Company
    Inventors: Carolyn R. Ellinger, David H. Levy, Shelby F. Nelson
  • Patent number: 8906490
    Abstract: The invention relates to a process for forming a stacked transparent structure comprising providing a support, coating one side of said support with a multicolored mask, coating the other side of the support with a layer curable by visible light, and exposing the light-curable layer through the mask with visible light to cure the layer curable by light in exposed portions to form a cured pattern.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: December 9, 2014
    Assignee: Eastman Kodak Company
    Inventors: Lynn M. Irving, David H. Levy, Mark E. Irving, Carolyn R. Ellinger
  • Publication number: 20140322858
    Abstract: Systems and methods for producing nanoscale textured low reflectivity surfaces may be utilized to fabricate solar cells. A substrate may be patterned with a resist prior to an etching process that produces a nanoscale texture on the surface of the substrate. Additionally, the substrate may be subjected to a dopant diffusion process. Prior to dopant diffusion, the substrate may be optionally subjected to liquid phase deposition to deposit a material that allows for patterned doping. The order of the nanoscale texture etching and dopant diffusion may be modified as desired to produce post-nano emitters or pre-nano emitters.
    Type: Application
    Filed: April 24, 2014
    Publication date: October 30, 2014
    Applicant: Natcore Technology, Inc.
    Inventors: David H. Levy, Daniele Margadonna, Dennis Flood, Wendy G. Ahearn, Richard W. Topel, JR., Theodore Zubil
  • Publication number: 20140322906
    Abstract: A method for an improved doping process allows for improved control of doping concentrations on a substrate. The method may comprise printing a polymeric material on a substrate in a desired pattern; and depositing a barrier layer on the substrate with a liquid phase deposition process, wherein a pattern of the barrier layer is defined by the polymeric material. The method further comprises removing the polymeric material, and doping the substrate. The barrier layer substantially prevents or reduces doping of the substrate to allow patterned doping regions to be formed on the substrate. The method can be repeated to allow additional doping regions to be formed on the substrate.
    Type: Application
    Filed: April 24, 2014
    Publication date: October 30, 2014
    Applicant: Natcore Technology, Inc.
    Inventors: David H. Levy, Daniele Margadonna, Dennis Flood, Wendy G. Ahearn, Richard W. Topel, JR., Theodore Zubil
  • Patent number: 8846545
    Abstract: A method of producing an inorganic multi-layered thin film structure includes providing a substrate. A patterned deposition inhibiting material layer is provided on the substrate. A first inorganic thin film material layer is selectively deposited on a region of the substrate where the deposition inhibiting material layer is not present using an atomic layer deposition process. A second inorganic thin film material layer is selectively deposited on the region of the substrate where the thin film deposition inhibiting material layer is not present using an atomic layer deposition process.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: September 30, 2014
    Assignee: Eastman Kodak Company
    Inventors: Carolyn R. Ellinger, David H. Levy, Shelby F. Nelson
  • Patent number: 8791023
    Abstract: A method of producing an inorganic thin film dielectric material layer includes providing a substrate. A first inorganic thin film dielectric material layer is deposited on the substrate using an atomic layer deposition process. The first inorganic thin film dielectric material layer is treated after its deposition. A patterned deposition inhibiting material layer is provided on the substrate. A second inorganic thin film dielectric material layer is selectively deposited on a region of the substrate where the deposition inhibiting material layer is not present using an atomic layer deposition process.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: July 29, 2014
    Assignee: Eastman Kodak Company
    Inventors: Carolyn R. Ellinger, David H. Levy, Shelby F. Nelson
  • Publication number: 20140206137
    Abstract: A process for depositing a thin film material on a substrate is disclosed, comprising simultaneously directing a series of gas flows from the output face of a delivery head of a thin film deposition system toward the surface of a substrate, and wherein the series of gas flows comprises at least a first reactive gaseous material, an inert purge gas, and a second reactive gaseous material, wherein the first reactive gaseous material is capable of reacting with a substrate surface treated with the second reactive gaseous material, wherein one or more of the gas flows provides a pressure that at least contributes to the separation of the surface of the substrate from the face of the delivery head. A system capable of carrying out such a process is also disclosed.
    Type: Application
    Filed: January 23, 2013
    Publication date: July 24, 2014
    Inventors: David H. Levy, Roger S. Kerr, Jeffrey T. Carey
  • Patent number: 8715894
    Abstract: The invention relates to a process for forming a structure comprising providing a support, coating one side of said support with a colored mask, coating a layer photopatternable by visible light, and exposing the layer through the colored mask with visible light to photopattern the layer.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: May 6, 2014
    Assignee: Eastman Kodak Company
    Inventors: Lyn M. Irving, David H. Levy, Mark E. Irving, Carolyn R. Ellinger
  • Patent number: 8716707
    Abstract: A device is prepared using a chemical vapor deposition method and has a patterned thin film on a substrate that is applied using a deposition inhibitor material. The deposition inhibitor material is a hydrophilic polymer that is a neutralized acid having a pKa of 5 or less, wherein at least 90% of the acid groups are neutralized. The deposition inhibitor material can be patterned simultaneously or subsequently to its application to the substrate, to provide selected areas of the substrate effectively not having the deposition inhibitor material. A thin film is substantially deposited only in the selected areas of the substrate not having the deposition inhibitor material.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: May 6, 2014
    Assignee: Eastman Kodak Company
    Inventor: David H. Levy
  • Publication number: 20140065803
    Abstract: A method of producing an inorganic multi-layered thin film structure includes providing a substrate. A patterned deposition inhibiting material layer is provided on the substrate. A first inorganic thin film material layer is selectively deposited on a region of the substrate where the deposition inhibiting material layer is not present using an atomic layer deposition process. A second inorganic thin film material layer is selectively deposited on the region of the substrate where the thin film deposition inhibiting material layer is not present using an atomic layer deposition process.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 6, 2014
    Inventors: Carolyn R. Ellinger, David H. Levy, Shelby F. Nelson
  • Publication number: 20140061869
    Abstract: An electronic element includes a substrate; a patterned first electrically conductive layer on the substrate; a patterned second electrically conductive layer on the substrate; and a dielectric stack on the substrate. A portion of the first electrically conductive layer and a portion of the second electrically conductive layer overlap each other such that an overlap region is present. At least a portion of the dielectric stack is positioned in the overlap region between the patterned first electrically conductive layer and the patterned second electrically conductive layer. The dielectric stack includes a first inorganic thin film dielectric material layer and a second inorganic thin film dielectric material layer. The first inorganic thin film dielectric material layer and the second inorganic thin film dielectric material layer have the same material composition.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 6, 2014
    Inventors: Shelby F. Nelson, Carolyn R. Ellinger, David H. Levy
  • Patent number: RE45322
    Abstract: A method of interpreting keypad input includes identifying a first letter of a target word from activation of an initial key, identifying a set of possible intermediate letters of the target word in response to non-activating traversal of associated keys of the keypad following activation of the initial key, identifying a last letter of the target word from activation of a final key following the non-activating traversal, and then determining the target word based upon the identified first, intermediate and last letters. The method is particularly useful in key input devices sensitive to non-activating finger position above the keys.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: January 6, 2015
    Assignee: Nuance Communications, Inc.
    Inventor: David H. Levy