Patents by Inventor David H. Levy

David H. Levy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140065830
    Abstract: A method of producing a patterned inorganic thin film dielectric stack includes providing a substrate. A first patterned deposition inhibiting material layer is provided on the substrate. A first inorganic thin film dielectric material layer is selectively deposited on a region of the substrate where the first deposition inhibiting material layer is not present using an atomic layer deposition process. The first deposition inhibiting and first inorganic thin film dielectric material layers are simultaneously treated after deposition of the first inorganic thin film dielectric material layer. A second patterned deposition inhibiting material layer is provided on the substrate. A second inorganic thin film dielectric material layer is selectively deposited on a region of the substrate where the second deposition inhibiting material layer is not present using an atomic layer deposition process.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 6, 2014
    Inventors: Carolyn R. Ellinger, David H. Levy, Shelby F. Nelson
  • Publication number: 20140065831
    Abstract: A method of producing an inorganic thin film dielectric material layer includes providing a substrate. A first inorganic thin film dielectric material layer is deposited on the substrate using an atomic layer deposition process. The first inorganic thin film dielectric material layer is treated after its deposition. A patterned deposition inhibiting material layer is provided on the substrate. A second inorganic thin film dielectric material layer is selectively deposited on a region of the substrate where the deposition inhibiting material layer is not present using an atomic layer deposition process.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 6, 2014
    Inventors: Carolyn R. Ellinger, David H. Levy, Shelby F. Nelson
  • Publication number: 20140061649
    Abstract: A transistor includes a substrate; a gate including a first electrically conductive layer stack on the substrate; and a first inorganic thin film dielectric layer on the substrate with the first inorganic thin film dielectric layer having a first pattern. A second inorganic thin film dielectric layer, having a second pattern, is in contact with the first inorganic thin film dielectric layer. The first inorganic thin film dielectric layer and the second thin film dielectric layer have the same material composition. A third inorganic thin film dielectric layer has a third pattern. A semiconductor layer is in contact with and has the same pattern as the third inorganic thin film dielectric material layer. A source/drain includes a second electrically conductive layer stack.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 6, 2014
    Inventors: Shelby F. Nelson, Carolyn R. Ellinger, David H. Levy
  • Publication number: 20140065838
    Abstract: A method of producing an inorganic thin film dielectric material layer includes providing a substrate. A first inorganic thin film dielectric material layer is deposited on the substrate using an atomic layer deposition process. The first inorganic thin film dielectric material layer is treated after its deposition. A second inorganic thin film dielectric material layer is deposited on the treated surface of the first inorganic thin film dielectric material layer using an atomic layer deposition process.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 6, 2014
    Inventors: Carolyn R. Ellinger, David H. Levy, Shelby F. Nelson
  • Publication number: 20140061795
    Abstract: A transistor includes a substrate; a gate including a first electrically conductive layer stack on the substrate; and a first inorganic thin film dielectric layer on the substrate with the first inorganic thin film dielectric layer having a first pattern. A second inorganic thin film dielectric layer has a second pattern. A semiconductor layer is in contact with and has the same pattern as the second inorganic thin film dielectric material layer. A source/drain includes a second electrically conductive layer stack.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 6, 2014
    Inventors: David H. Levy, Carolyn R. Ellinger, Shelby F. Nelson
  • Publication number: 20140061648
    Abstract: A transistor includes a substrate; a gate including a first electrically conductive layer stack on the substrate; and a first inorganic thin film dielectric layer on the substrate with the first inorganic thin film dielectric layer having a first pattern. A second inorganic thin film dielectric layer, having a second pattern, is in contact with the first inorganic thin film dielectric layer. The first inorganic thin film dielectric layer and the second thin film dielectric layer have the same material composition. A semiconductor layer has a third pattern. A source/drain includes a second electrically conductive layer stack.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 6, 2014
    Inventors: David H. Levy, Carolyn R. Ellinger, Shelby F. Nelson
  • Patent number: 8664673
    Abstract: A process for forming a pixel circuit is disclosed comprising: (a) providing a transparent support; (b) forming a multicolor mask having at least four different color patterns; (c) forming integrated electronic components of the pixel circuit having at least four layers of patterned functional material comprising a first conductor, a dielectric, a semiconductor, and a second conductor each layer of patterned functional material corresponding to the four different color patterns of the multicolor mask. The functional material is patterned using a photopattern corresponding to each color pattern.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: March 4, 2014
    Assignee: Eastman Kodak Company
    Inventors: Lyn M. Irving, David H. Levy, Lan B. Thai
  • Patent number: 8653516
    Abstract: A transistor includes a substrate; a gate including a first electrically conductive layer stack on the substrate; and a first inorganic thin film dielectric layer on the substrate with the first inorganic thin film dielectric layer having a first pattern. A second inorganic thin film dielectric layer, having a second pattern, is in contact with the first inorganic thin film dielectric layer. The first inorganic thin film dielectric layer and the second thin film dielectric layer have the same material composition. A third inorganic thin film dielectric layer has a third pattern. A semiconductor layer is in contact with and has the same pattern as the third inorganic thin film dielectric material layer. A source/drain includes a second electrically conductive layer stack.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: February 18, 2014
    Assignee: Eastman Kodak Company
    Inventors: Shelby F. Nelson, Carolyn R. Ellinger, David H. Levy
  • Patent number: 8623757
    Abstract: Producing a vertical transistor includes providing a substrate including a gate material layer stack with a reentrant profile. A patterned deposition inhibiting material is deposited over a portion of the gate material layer stack and over a portion of the substrate. An electrically insulating material layer is deposited over a portion of the gate material layer stack and over a portion of the substrate using a selective area deposition process in which the electrically insulating material layer is not deposited over the patterned deposition inhibiting material. A semiconductor material layer is deposited over the electrically insulating material layer.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: January 7, 2014
    Assignee: Eastmak Kodak Company
    Inventors: Shelby F. Nelson, David H. Levy, Lee W. Tutt
  • Patent number: 8618003
    Abstract: Electronic devices can be prepared by forming a patterned thin film on a suitable receiver substrate. A cyanoacrylate polymer is used as a deposition inhibitor material and applied first as a deposition inhibitor material. The deposition inhibitor material can be patterned to provide selected areas on the receiver substrate where the deposition inhibitor is absent. An inorganic thin film is then deposited on the receiver substrate using a chemical vapor deposition technique only in those areas where the deposition inhibitor material is absent. The cyanoacrylate polymer deposition inhibitor material can be applied by thermal transfer from a donor element to a receiver substrate before a patterned thin film is formed.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: December 31, 2013
    Assignee: Eastman Kodak Company
    Inventors: Mitchell S. Burberry, David H. Levy
  • Publication number: 20130281776
    Abstract: A sexual stimulation device has a housing and an exposed sexual organ contact surface supported by the housing. The housing defines an elongated internal cavity having a longitudinal axis extending away from the contact surface. The device also includes a mass laterally constrained within and movable linearly along the cavity, and an electrically driven actuator disposed within the housing and operable to accelerate the mass along the axis of the cavity, thereby oscillating the contact surface in a linear motion along the longitudinal axis.
    Type: Application
    Filed: March 15, 2013
    Publication date: October 24, 2013
    Inventor: David H. Levy
  • Patent number: 8529990
    Abstract: A thin film environmental barrier encapsulation process includes providing an electronic device on a substrate, a first reactant gaseous material, a second reactant gaseous material, an inert gaseous material; and a delivery head through which the reactant gaseous materials and the inert gaseous material are simultaneously directed toward the electronic device and the substrate. One or more of the reactant gaseous materials and the inert gaseous material flows through the delivery head. The flow of the one or more of the reactant gaseous materials and the inert gaseous material generates a pressure to create a gas fluid bearing that maintains a substantially uniform distance between the delivery head and the substrate. Relative motion between the delivery head and the substrate causes the second reactant gaseous material to react with at least a portion of the electronic device and the substrate that has been treated with the first reactant gaseous material.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: September 10, 2013
    Assignee: Eastman Kodak Company
    Inventors: Elena A. Fedorovskaya, Michael L. Boroson, David H. Levy, John A. Agostinelli
  • Publication number: 20130197302
    Abstract: A sexual stimulation device includes an elongated dildo housing sized to be received within an orifice of a human body, the housing defining an internal cavity extending along a longitudinal axis of the housing, a mass laterally constrained within the cavity and movable linearly along the cavity, and an electrically driven actuator disposed within the housing and operably coupled to the mass. The actuator is operable to accelerate the mass along the cavity and to thereby induce a longitudinal reactive acceleration of the housing.
    Type: Application
    Filed: March 14, 2013
    Publication date: August 1, 2013
    Inventor: David H. Levy
  • Publication number: 20130168462
    Abstract: A delivery device for thin-film material deposition has at least first, second, and third inlet ports for receiving a common supply for a first, a second and a third gaseous material, respectively. Each of the first, second, and third elongated emissive channels allow gaseous fluid communication with one of corresponding first, second, and third inlet ports. The delivery device can be formed from apertured plates, superposed to define a network of interconnecting supply chambers and directing channels for routing each of the gaseous materials from its corresponding inlet port to a corresponding plurality of elongated emissive channels. The delivery device comprises a diffusing channel formed by a relief pattern between facing plates. Also disclosed is a process for thin film deposition. Finally, more generally, a flow diffuser and a corresponding method of diffusing flow is disclosed.
    Type: Application
    Filed: February 26, 2013
    Publication date: July 4, 2013
    Inventors: ROGER S. KERR, DAVID H. LEVY, JAMES T. MURRAY
  • Publication number: 20130140064
    Abstract: Electronic devices can be prepared by forming a patterned thin film on a suitable receiver substrate. A cyanoacrylate polymer is used as a deposition inhibitor material and applied first as a deposition inhibitor material. The deposition inhibitor material can be patterned to provide selected areas on the receiver substrate where the deposition inhibitor is absent. An inorganic thin film is then deposited on the receiver substrate using a chemical vapor deposition technique only in those areas where the deposition inhibitor material is absent. The cyanoacrylate polymer deposition inhibitor material can be applied by thermal transfer from a donor element to a receiver substrate before a patterned thin film is formed.
    Type: Application
    Filed: December 5, 2011
    Publication date: June 6, 2013
    Inventors: Mitchell S. Burberry, David H. Levy
  • Patent number: 8420168
    Abstract: A delivery device for thin-film material deposition has at least first, second, and third inlet ports for receiving a common supply for a first, a second and a third gaseous material, respectively. Each of the first, second, and third elongated emissive channels allow gaseous fluid communication with one of corresponding first, second, and third inlet ports. The delivery device can be formed from apertured plates, superposed to define a network of interconnecting supply chambers and directing channels for routing each of the gaseous materials from its corresponding inlet port to a corresponding plurality of elongated emissive channels. The delivery device comprises a diffusing channel formed by a relief pattern between facing plates. Also disclosed is a process for thin film deposition. Finally, more generally, a flow diffuser and a corresponding method of diffusing flow is disclosed.
    Type: Grant
    Filed: May 8, 2012
    Date of Patent: April 16, 2013
    Assignee: Eastman Kodak Company
    Inventors: Roger S. Kerr, David H. Levy, James T. Murray
  • Publication number: 20130084681
    Abstract: Producing a vertical transistor includes providing a substrate including a gate material layer stack with a reentrant profile. A patterned deposition inhibiting material is deposited over a portion of the gate material layer stack and over a portion of the substrate. An electrically insulating material layer is deposited over a portion of the gate material layer stack and over a portion of the substrate using a selective area deposition process in which the electrically insulating material layer is not deposited over the patterned deposition inhibiting material. A semiconductor material layer is deposited over the electrically insulating material layer.
    Type: Application
    Filed: September 29, 2011
    Publication date: April 4, 2013
    Inventors: Shelby F. Nelson, David H. Levy, Lee W. Tutt
  • Patent number: 8398770
    Abstract: A process for depositing a thin film material on a substrate is disclosed, comprising simultaneously directing a series of gas flows from the output face of a delivery head of a thin film deposition system toward the surface of a substrate, and wherein the series of gas flows comprises at least a first reactive gaseous material, an inert purge gas, and a second reactive gaseous material, wherein the first reactive gaseous material is capable of reacting with a substrate surface treated with the second reactive gaseous material, wherein one or more of the gas flows provides a pressure that at least contributes to the separation of the surface of the substrate from the face of the delivery head. A system capable of carrying out such a process is also disclosed.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: March 19, 2013
    Assignee: Eastman Kodak Company
    Inventors: David H. Levy, Roger S. Kerr, Jeffrey T. Carey
  • Patent number: 8318249
    Abstract: A chemical vapor deposition method such as an atomic-layer-deposition method for forming a patterned thin film includes applying a deposition inhibitor material to a substrate. The deposition inhibitor material is a hydrophilic poly(vinyl alcohol) having a degree of hydrolysis of less than 95%. The deposition inhibitor material is patterned simultaneously or subsequently to its application to the substrate, to provide selected areas of the substrate effectively not having the deposition inhibitor material. A thin film is substantially deposited only in the selected areas of the substrate not having the deposition inhibitor material.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: November 27, 2012
    Assignee: Eastman Kodak Company
    Inventor: David H. Levy
  • Patent number: 8273654
    Abstract: Producing a vertical transistor includes providing a substrate including a gate material layer stack with a reentrant profile. An electrically insulating material layer is deposited over a portion of the gate material layer stack and over a portion of the substrate. A patterned deposition inhibiting material is deposited over the electrically insulating material layer. A semiconductor material layer is deposited over the electrically insulating material layer using a selective area deposition process in which the semiconductor material layer is not deposited over the patterned deposition inhibiting material.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: September 25, 2012
    Assignee: Eastman Kodak Company
    Inventors: Shelby F. Nelson, David H. Levy, Lee W. Tutt