Patents by Inventor Dennis M. Newns

Dennis M. Newns has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10468432
    Abstract: A method is presented for incorporating a metal-ferroelectric-metal (MFM) structure in a cross-bar array in back end of the line (BEOL) processing. The method includes forming a first electrode, forming a ferroelectric layer in direct contact with the first electrode, forming a second electrode in direct contact with the ferroelectric layer, such that the first electrode and the ferroelectric layer are perpendicular to the second electrode to form the cross-bar array, and biasing the second electrode to adjust domain wall movement within the ferroelectric layer.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: November 5, 2019
    Assignee: International Business Machines Corporation
    Inventors: Jin Ping Han, Ramachandran Muralidhar, Paul M. Solomon, Dennis M. Newns, Martin M. Frank
  • Publication number: 20190259805
    Abstract: A piezo-junction device may be provided. The piezo-junction device comprises a piezoelectric element comprising two electrodes and piezoelectric material in-between, and a semiconductor junction device adjacent to the piezoelectric element such that one of the two electrodes of the piezoelectric element is in contact with the semiconductor junction device connecting the semiconductor junction device and the piezoelectric element electrically in series. Thereby, the semiconductor junction device and the piezoelectric element are together positioned in a fixed mechanical clamp such that the piezoelectric element with an applied electrical field applies strain to the semiconductor junction device causing a change in Fermi levels of the semiconductor junction device.
    Type: Application
    Filed: February 16, 2018
    Publication date: August 22, 2019
    Inventors: Glenn J. Martyna, Kirsten Emilie Moselund, Dennis M. Newns
  • Publication number: 20190221559
    Abstract: A metal-insulator-metal (MIM) capacitor structure includes source and drain regions formed within a semiconductor substrate, a first conducting layer formed over the source and drain regions, and a dielectric layer formed over the first conducting layer. The MIM capacitor structure further includes a second conducting layer formed over the dielectric layer, and a sidewall dielectric formed adjacent the first conducting layer and the dielectric layer. An electric field is created indirectly through the sidewall dielectric to an adjacent field effect transistor (FET) channel in the semiconductor substrate.
    Type: Application
    Filed: March 21, 2019
    Publication date: July 18, 2019
    Inventors: Jin-Ping Han, Yulong Li, Dennis M. Newns, Paul M. Solomon, Xiao Sun
  • Patent number: 10354824
    Abstract: A piezoelectronic switch device for radio frequency (RF) applications includes a piezoelectric (PE) material layer and a piezoresistive (PR) material layer separated from one another by at least one electrode, wherein an electrical resistance of the PR material layer is dependent upon an applied voltage across the PE material layer by way of an applied pressure to the PR material layer by the PE material layer; and a conductive, high yield material (C-HYM) comprising a housing that surrounds the PE material layer, the PR material layer and the at least one electrode, the C-HYM configured to mechanically transmit a displacement of the PE material layer to the PR material layer such that applied voltage across the PE material layer causes an expansion thereof and an increase the applied pressure to the PR material layer, thereby causing a decrease in the electrical resistance of the PR material layer.
    Type: Grant
    Filed: May 25, 2016
    Date of Patent: July 16, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Matthew W. Copel, Bruce G. Elmegreen, Glenn J. Martyna, Dennis M. Newns, Thomas M. Shaw, Paul M. Solomon
  • Patent number: 10340447
    Abstract: A method of fabricating a memristive structure for symmetric modulation between resistance states is presented. The method includes forming a first electrode and a second electrode over an insulating substrate, forming an anode contacting the first and second electrodes, forming an ionic conductor over the anode, forming a cathode of the same material as the anode over the ionic conductor, forming a third electrode over the cathode, and enabling bidirectional transport of ions between the anode and cathode resulting in a resistance adjustment of the memristive structure, the anode and the cathode being formed from metastable mixed conducting materials with ion concentration dependent conductivity.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: July 2, 2019
    Assignee: International Business Machines Corporation
    Inventors: Kevin W. Brew, Talia S. Gershon, Seyoung Kim, Dennis M. Newns, Teodor K. Todorov
  • Patent number: 10332874
    Abstract: A metal-insulator-metal (MIM) capacitor structure includes source and drain regions formed within a semiconductor substrate, a first conducting layer formed over the source and drain regions, and a dielectric layer formed over the first conducting layer. The MIM capacitor structure further includes a second conducting layer formed over the dielectric layer, and a sidewall dielectric formed adjacent the first conducting layer and the dielectric layer. An electric field is created indirectly through the sidewall dielectric to an adjacent field effect transistor (FET) channel in the semiconductor substrate.
    Type: Grant
    Filed: May 3, 2017
    Date of Patent: June 25, 2019
    Assignee: International Business Machines Corporation
    Inventors: Jin-Ping Han, Yulong Li, Dennis M. Newns, Paul M. Solomon, Xiao Sun
  • Publication number: 20190157552
    Abstract: A method of fabricating a memristive structure for symmetric modulation between resistance states is presented. The method includes forming a first electrode and a second electrode over an insulating substrate, forming an anode contacting the first and second electrodes, forming an ionic conductor over the anode, forming a cathode of the same material as the anode over the ionic conductor, forming a third electrode over the cathode, and enabling bidirectional transport of ions between the anode and cathode resulting in a resistance adjustment of the memristive structure, the anode and the cathode being formed from metastable mixed conducting materials with ion concentration dependent conductivity.
    Type: Application
    Filed: January 7, 2019
    Publication date: May 23, 2019
    Inventors: Kevin W. Brew, Talia S. Gershon, Seyoung Kim, Dennis M. Newns, Teodor K. Todorov
  • Patent number: 10229736
    Abstract: Memristive devices based on ion-transfer between two meta-stable phases in an ion intercalated material are provided. In one aspect, a memristive device is provided. The memristive device includes: a first inert metal contact; a layer of a phase separated material disposed on the first inert metal contact, wherein the phase separated material includes interstitial ions; and a second inert metal contact disposed on the layer of the phase separated material. The first phase of the phase separated material can have a different concentration of the interstitial ions from the second phase of the phase separated material such that the first phase of the phase separated material has a different electrical conductivity from the second phase of the phase separated material. A method for operating the present memristive device is also provided.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: March 12, 2019
    Assignee: International Business Machines Corporation
    Inventors: Kevin W. Brew, Talia S. Gershon, Seyoung Kim, Glenn J. Martyna, Dennis M. Newns, Teodor K. Todorov
  • Patent number: 10186657
    Abstract: A method of fabricating a memristive structure for symmetric modulation between resistance states is presented. The method includes forming a first electrode and a second electrode over an insulating substrate, forming an anode contacting the first and second electrodes, forming an ionic conductor over the anode, forming a cathode of the same material as the anode over the ionic conductor, forming a third electrode over the cathode, and enabling bidirectional transport of ions between the anode and cathode resulting in a resistance adjustment of the memristive structure, the anode and the cathode being formed from metastable mixed conducting materials with ion concentration dependent conductivity.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: January 22, 2019
    Assignee: International Business Machines Corporation
    Inventors: Kevin W. Brew, Talia S. Gershon, Seyoung Kim, Dennis M. Newns, Teodor K. Todorov
  • Publication number: 20180374535
    Abstract: Memristive devices based on ion-transfer between two meta-stable phases in an ion intercalated material are provided. In one aspect, a memristive device is provided. The memristive device includes: a first inert metal contact; a layer of a phase separated material disposed on the first inert metal contact, wherein the phase separated material includes interstitial ions; and a second inert metal contact disposed on the layer of the phase separated material. The first phase of the phase separated material can have a different concentration of the interstitial ions from the second phase of the phase separated material such that the first phase of the phase separated material has a different electrical conductivity from the second phase of the phase separated material. A method for operating the present memristive device is also provided.
    Type: Application
    Filed: June 22, 2017
    Publication date: December 27, 2018
    Inventors: Kevin W. Brew, Talia S. Gershon, Seyoung Kim, Glenn J. Martyna, Dennis M. Newns, Teodor K. Todorov
  • Patent number: 10164179
    Abstract: Embodiments are directed to a memristive device. The memristive device includes a first conductive material layer. An oxide material layer is arranged on the first conductive layer. And a second conductive material layer is arranged on the oxide material layer, wherein the second conductive material layer comprises a metal-alkali alloy.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: December 25, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kevin W. Brew, Talia S. Gershon, Dennis M. Newns, Saurabh Singh
  • Publication number: 20180358552
    Abstract: A method of fabricating a memristive structure for symmetric modulation between resistance states is presented. The method includes forming a first electrode and a second electrode over an insulating substrate, forming an anode contacting the first and second electrodes, forming an ionic conductor over the anode, forming a cathode of the same material as the anode over the ionic conductor, forming a third electrode over the cathode, and enabling bidirectional transport of ions between the anode and cathode resulting in a resistance adjustment of the memristive structure, the anode and the cathode being formed from metastable mixed conducting materials with ion concentration dependent conductivity.
    Type: Application
    Filed: June 7, 2017
    Publication date: December 13, 2018
    Inventors: Kevin W. Brew, Talia S. Gershon, Seyoung Kim, Dennis M. Newns, Teodor K. Todorov
  • Publication number: 20180358553
    Abstract: A method of fabricating a memristive structure for symmetric modulation between resistance states is presented. The method includes forming a first electrode and a second electrode over an insulating substrate, forming an anode contacting the first and second electrodes, forming an ionic conductor over the anode, forming a cathode of the same material as the anode over the ionic conductor, forming a third electrode over the cathode, and enabling bidirectional transport of ions between the anode and cathode resulting in a resistance adjustment of the memristive structure, the anode and the cathode being formed from metastable mixed conducting materials with ion concentration dependent conductivity.
    Type: Application
    Filed: December 5, 2017
    Publication date: December 13, 2018
    Inventors: Kevin W. Brew, Talia S. Gershon, Seyoung Kim, Dennis M. Newns, Teodor K. Todorov
  • Publication number: 20180323188
    Abstract: A metal-insulator-metal (MIM) capacitor structure includes source and drain regions formed within a semiconductor substrate, a first conducting layer formed over the source and drain regions, and a dielectric layer formed over the first conducting layer. The MIM capacitor structure further includes a second conducting layer formed over the dielectric layer, and a sidewall dielectric formed adjacent the first conducting layer and the dielectric layer. An electric field is created indirectly through the sidewall dielectric to an adjacent field effect transistor (FET) channel in the semiconductor substrate.
    Type: Application
    Filed: May 3, 2017
    Publication date: November 8, 2018
    Inventors: Jin-Ping Han, Yulong Li, Dennis M. Newns, Paul M. Solomon, Xiao Sun
  • Publication number: 20180277683
    Abstract: A method of fabricating a symmetric element of a resistive processing unit (RPU) includes forming a substrate with a channel region connecting two doped regions, and forming a source above one of the two doped regions and a drain above the other of the two doped regions. A gate is formed above the channel region, and a bar ferroelectric is disposed above the channel region and below the gate.
    Type: Application
    Filed: March 21, 2017
    Publication date: September 27, 2018
    Inventors: Jin-Ping Han, Ramachandran Muralidhar, Dennis M. Newns, Paul M. Solomon
  • Publication number: 20180247181
    Abstract: A method for updating the resistance of a controllable resistance element includes determining an amount of resistance change for the controllable resistive element. A charge difference for a battery is determined corresponding to the resistance change for the controllable resistive element. The battery is charged or discharged to effect the resistance change in the controllable resistive element.
    Type: Application
    Filed: November 3, 2017
    Publication date: August 30, 2018
    Inventors: Kevin W. Brew, Seyoung Kim, Effendi Leobandung, Dennis M. Newns
  • Publication number: 20180247179
    Abstract: A controllable resistive element and method for updating the resistance of the same includes a state device configured to provide a voltage-controlled resistance responsive to a voltage input. A battery is configured to apply a voltage to the voltage input of the state device based on a charge stored in the battery. A write device is configured to charge the battery responsive to a write signal. An erase device is configured to discharge the battery responsive to an erase signal.
    Type: Application
    Filed: February 24, 2017
    Publication date: August 30, 2018
    Inventors: Kevin W. Brew, Seyoung Kim, Effendi Leobandung, Dennis M. Newns
  • Publication number: 20180205011
    Abstract: Embodiments are directed to a memristive device. The memristive device includes a first conductive material layer. An oxide material layer is arranged on the first conductive layer. And a second conductive material layer is arranged on the oxide material layer, wherein the second conductive material layer comprises a metal-alkali alloy.
    Type: Application
    Filed: January 13, 2017
    Publication date: July 19, 2018
    Inventors: Kevin W. Brew, Talia S. Gershon, Dennis M. Newns, Saurabh Singh
  • Patent number: 9941472
    Abstract: A piezoelectronic device with novel force amplification includes a first electrode; a piezoelectric layer disposed on the first electrode; a second electrode disposed on the piezoelectric layer; an insulator disposed on the second electrode; a piezoresistive layer disposed on the insulator; a third electrode disposed on the insulator; a fourth electrode disposed on the insulator; a semi-rigid housing surrounding the layers and the electrodes; wherein the semi-rigid housing is in contact with the first, third, and fourth electrodes and the piezoresistive layer; wherein the semi-rigid housing includes a void. The third and fourth electrodes are on the same plane and separated from each other in the transverse direction by a distance.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: April 10, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bruce G. Elmegreen, Marcelo A. Kuroda, Xiao Hu Liu, Glenn J. Martyna, Dennis M. Newns, Paul M. Solomon
  • Publication number: 20180090681
    Abstract: A piezoelectronic device with novel force amplification includes a first electrode; a piezoelectric layer disposed on the first electrode; a second electrode disposed on the piezoelectric layer; an insulator disposed on the second electrode; a piezoresistive layer disposed on the insulator; a third electrode disposed on the insulator; a fourth electrode disposed on the insulator; a semi-rigid housing surrounding the layers and the electrodes; wherein the semi-rigid housing is in contact with the first, third, and fourth electrodes and the piezoresistive layer; wherein the semi-rigid housing includes a void. The third and fourth electrodes are on the same plane and separated from each other in the transverse direction by a distance.
    Type: Application
    Filed: November 29, 2017
    Publication date: March 29, 2018
    Inventors: Bruce G. Elmegreen, Marcelo A. Kuroda, Xiao Hu Liu, Glenn J. Martyna, Dennis M. Newns, Paul M. Solomon