Patents by Inventor Douglas D. Coolbaugh

Douglas D. Coolbaugh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7511940
    Abstract: Disclosed is a method of fabricating a metal-insulator-metal (MIM) capacitor. In this method, a dielectric layer is formed above a lower conductor layer and an upper conductor layer is formed above the dielectric layer. The invention then forms an etch stop layer above the upper conductor layer and the dielectric layer, and forms a hardmask (silicon oxide hardmask, a silicon nitride hardmask, etc.) over the etch stop layer. Next, a photoresist is patterned above the hardmask, which allows the hardmask, the etch stop layer, the dielectric layer, and the lower conductor layer to be etched through the photoresist.
    Type: Grant
    Filed: August 15, 2007
    Date of Patent: March 31, 2009
    Assignee: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, Ebenezer E. Eshun, Natalie B. Feilchenfeld, Michael L. Gautsch, Zhong-Xiang He, Matthew D. Moon, Vidhya Ramachandran, Barbara Waterhouse
  • Publication number: 20090065898
    Abstract: In the course of forming a resistor in the back end of an integrated circuit, an intermediate dielectric layer is deposited and a trench etched through it and into a lower dielectric layer by a controllable amount, so that the top of a resistor layer deposited in the trench is close in height to the top of the lower dielectric layer; the trench is filled and the resistor layer outside the trench is removed, after which a second dielectric layer is deposited. Vias passing through the second dielectric layer to contact the resistor then have the same depth as vias contacting metal interconnects in the lower dielectric layer. A tri-layer resistor structure is employed in which the resistive film is sandwiched between two protective layers that block diffusion between the resistor and BEOL ILD layers.
    Type: Application
    Filed: November 17, 2008
    Publication date: March 12, 2009
    Inventors: Anil K. Chinthakindi, Douglas D. Coolbaugh, John M. Cotte, Ebenezer E. Eshun, Zhong-Xiang He, Anthony K. Stamper, Eric J. White
  • Patent number: 7494912
    Abstract: Terminal pads and methods of fabricating terminal pads. The methods including forming a conductive diffusion barrier under a conductive pad in or overlapped by a passivation layer comprised of multiple dielectric layers including diffusion barrier layers. The methods including forming the terminal pads subtractively or by a damascene process.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: February 24, 2009
    Assignee: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, Daniel C. Edelstein, Ebenezer E. Eshun, Zhong-Xiang He, Robert M. Rassel, Anthony K. Stamper
  • Patent number: 7491632
    Abstract: A method of fabricating a buried subcollector in which the buried subcollector is implanted to a depth in which during subsequent epi growth the buried subcollector remains substantially below the fictitious interface between the epi layer and the substrate is provided. In particular, the inventive method forms a buried subcollector having an upper surface (i.e., junction) that is located at a depth from about 3000 ? or greater from the upper surface of the semiconductor substrate. This deep buried subcollector having an upper surface that is located at a depth from about 3000 ? or greater from the upper surface of the substrate is formed using a reduced implant energy (as compared to a standard deep implanted subcollector process) at a relative high dose. The present invention also provides a semiconductor structure including the inventive buried subcollector which can be used as cathode for passive devices in high frequency applications.
    Type: Grant
    Filed: November 10, 2005
    Date of Patent: February 17, 2009
    Assignee: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, Xuefeng Liu, Robert M. Rassel, David C. Sheridan
  • Patent number: 7485540
    Abstract: In the course of forming a resistor in the back end of an integrated circuit, an intermediate dielectric layer is deposited and a trench etched through it and into a lower dielectric layer by a controllable amount, so that the top of a resistor layer deposited in the trench is close in height to the top of the lower dielectric layer; the trench is filled and the resistor layer outside the trench is removed, after which a second dielectric layer is deposited. Vias passing through the second dielectric layer to contact the resistor then have the same depth as vias contacting metal interconnects in the lower dielectric layer. A tri-layer resistor structure is employed in which the resistive film is sandwiched between two protective layers that block diffusion between the resistor and BEOL ILD layers.
    Type: Grant
    Filed: August 18, 2005
    Date of Patent: February 3, 2009
    Assignee: International Business Machines Corporation
    Inventors: Anil K. Chinthakindi, Douglas D. Coolbaugh, John M. Cotte, Ebenezer E. Eshun, Zhong-Xiang He, Anthony K. Stamper, Eric J. White
  • Patent number: 7479439
    Abstract: A semiconductor-insulator-silicide (SIS) capacitor is formed by depositing a thin silicon containing layer on a salicide mask dielectric layer, followed by lithographic patterning of the stack and metallization of the thin silicon containing layer and other exposed semiconductor portions of a semiconductor substrate. The thin silicon containing layer is fully reacted during metallization and consequently converted to a silicide alloy layer, which is a first electrode of a capacitor. The salicide mask dielectric layer is the capacitor dielectric. The second electrode of the capacitor may be a doped polycrystalline silicon containing layer, a doped single crystalline semiconductor region, or another doped polycrystalline silicon containing layer disposed on the doped polycrystalline silicon containing layer. The SIS insulator may further comprise other dielectric layers and conductive layers to increase capacitance per area.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: January 20, 2009
    Assignee: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, Zhong-Xiang He, Robert M. Rassel, Richard J. Rassel, Stephen A. St Onge
  • Publication number: 20080258197
    Abstract: A semiconductor-insulator-silicide (SIS) capacitor is formed by depositing a thin silicon containing layer on a salicide mask dielectric layer, followed by lithographic patterning of the stack and metallization of the thin silicon containing layer and other exposed semiconductor portions of a semiconductor substrate. The thin silicon containing layer is fully reacted during metallization and consequently converted to a silicide alloy layer, which is a first electrode of a capacitor. The salicide mask dielectric layer is the capacitor dielectric. The second electrode of the capacitor may be a doped polycrystalline silicon containing layer, a doped single crystalline semiconductor region, or another doped polycrystalline silicon containing layer disposed on the doped polycrystalline silicon containing layer. The SIS insulator may further comprise other dielectric layers and conductive layers to increase capacitance per area.
    Type: Application
    Filed: April 20, 2007
    Publication date: October 23, 2008
    Inventors: Douglas D. Coolbaugh, Zhong-Xiang He, Robert M. Rassel, Richard J. Rassel, Stephen A. St Onge
  • Patent number: 7439151
    Abstract: A method for integrating the formation of metal-insulator-metal (MIM) capacitors within dual damascene processing includes forming a lower interlevel dielectric (ILD) layer having a lower capacitor electrode and one or more lower metal lines therein, the ILD layer having a first dielectric capping layer formed thereon. An upper ILD layer is formed over the lower ILD layer, and a via and upper line structure are defined within the upper ILD layer. The via and upper line structure are filled with a planarizing layer, followed by forming and patterning a resist layer over the planarizing layer. An upper capacitor electrode structure is defined in the upper ILD layer corresponding to a removed portion of the resist. The via, upper line structure and upper capacitor electrode structure are filled with conductive material, wherein a MIM capacitor is defined by the lower capacitor electrode, first dielectric capping layer and upper capacitor electrode structure.
    Type: Grant
    Filed: September 13, 2006
    Date of Patent: October 21, 2008
    Assignee: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, Timothy J. Dalton, Ebenezer Eshun, Vincent J. McGahay, Anthony K. Stamper, Kunal Vaed
  • Patent number: 7439607
    Abstract: A method of forming semiconductor device treating a surface of a substrate to produce a discontinuous growth of a material on the surface through rapid thermal oxidation of the substrate surface at a temperature of less than about 700° C.
    Type: Grant
    Filed: October 11, 2005
    Date of Patent: October 21, 2008
    Assignee: International Business Machines Corporation
    Inventors: Arne W. Ballantine, Douglas D. Coolbaugh, Steve S. Williams
  • Patent number: 7410894
    Abstract: A method of forming a semiconductor structure, and the semiconductor structure so formed, wherein a transmission line, such as an inductor, is formed on a planar level above the surface of a last metal wiring level.
    Type: Grant
    Filed: July 27, 2005
    Date of Patent: August 12, 2008
    Assignee: International Business Machines Corporation
    Inventors: Anil K. Chinthakindi, Douglas D. Coolbaugh, John E. Florkey, Jeffrey P. Gambino, Zhong-Xiang He, Anthony K. Stamper, Kunal Vaed
  • Publication number: 20080185684
    Abstract: A method for integrating the formation of metal-insulator-metal (MIM) capacitors within dual damascene processing includes forming a lower interlevel dielectric (ILD) layer having a lower capacitor electrode and one or more lower metal lines therein, the ILD layer having a first dielectric capping layer formed thereon. An upper ILD layer is formed over the lower ILD layer, and a via and upper line structure are defined within the upper ILD layer. The via and upper line structure are filled with a planarizing layer, followed by forming and patterning a resist layer over the planarizing layer. An upper capacitor electrode structure is defined in the upper ILD layer corresponding to a removed portion of the resist. The via, upper line structure and upper capacitor electrode structure are filled with conductive material, wherein a MIM capacitor is defined by the lower capacitor electrode, first dielectric capping layer and upper capacitor electrode structure.
    Type: Application
    Filed: April 7, 2008
    Publication date: August 7, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Douglas D. Coolbaugh, Timothy J. Dalton, Ebenezer Eshun, Vincent J. McGahay, Anthony K. Stamper, Kunal Vaed
  • Publication number: 20080173976
    Abstract: A method is provided for fabricating a microelectronic chip which includes a passive device such, as an inductor, overlying an air gap. In such method, a plurality of front-end-of-line (“FEOL”) devices are formed in a semiconductor region of the microelectronic chip, and a plurality of stacked interlevel dielectric (“ILD”) layers are formed to overlie the plurality of FEOL devices, the plurality of stacked ILD layers including a first ILD layer and a second ILD layer, where the second ILD layer is resistant to attack by a first etchant which attacks the first ILD layer. A passive device is formed to overlie at least the first ILD layer. Using the first etchant, a portion of the first ILD layer in registration with the passive device is removed to form an air gap which underlies the passive device in registration with the passive device.
    Type: Application
    Filed: January 24, 2007
    Publication date: July 24, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Anthony K. Stamper, Anil K. Chinthakindi, Douglas D. Coolbaugh, Timothy J. Dalton, Daniel C. Edelstein, Ebenezer E. Eshun, Jeffrey P. Gambino, William J. Murphy, Kunal Vaed
  • Publication number: 20080173981
    Abstract: An Integrated Circuit (IC) chip with one or more vertical plate capacitors, each vertical plate capacitor connected to circuits on the IC chip and a method of making the chip capacitors. The vertical plate capacitors are formed with base plate pattern (e.g., damascene copper) on a circuit layer and at least one upper plate layer (e.g., dual damascene copper) above, connected to and substantially identical with the base plate pattern. A vertical pair of capacitor plates are formed by the plate layer and base plate. Capacitor dielectric between the vertical pair of capacitor plates is, at least in part, a high-k dielectric.
    Type: Application
    Filed: January 19, 2007
    Publication date: July 24, 2008
    Inventors: Anil K. Chinthakindi, Douglas D. Coolbaugh, Ebenezer E. Eshun, Zhong-Xiang He, Anthony K. Stamper, Kunal Vaed
  • Patent number: 7399696
    Abstract: A method of forming a high performance inductor comprises providing a substrate; forming a plurality of wiring levels over the substrate, wherein each of the wiring levels comprise a dielectric layer; forming a first trench having a first depth in a first dielectric layer on a first wiring level; forming a second trench in the first dielectric layer having a second depth extending at least into a second wiring level; forming a conductor layer substantially simultaneously in the first and second trenches; and removing portions of the conductor layer overfilling the first and second trenches to form a spiral-shaped inductor in the second trench. The method may further comprise forming an interconnect structure in the first trench.
    Type: Grant
    Filed: August 2, 2005
    Date of Patent: July 15, 2008
    Assignee: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, Mete Erturk, Zhong-Xiang He, Anthony K. Stamper
  • Patent number: 7397087
    Abstract: A FEOL/MEOL metal resistor that has tight sheet resistance tolerance (on the order of about 5% or less), high current density (on the order of about 0.5 mA/micron or greater), lower parasitics than diffused resistors and lower TCR than standard BEOL metal resistors as well as various methods of integrating such a metal resistor structure into a CMOS technology are provided.
    Type: Grant
    Filed: August 6, 2004
    Date of Patent: July 8, 2008
    Assignee: International Business Machines Corporation
    Inventors: Anil K. Chinthakindi, Douglas D. Coolbaugh, Vidhya Ramachandran, Robert M. Rassel
  • Publication number: 20080158771
    Abstract: A method of forming a metal-insulator-metal (MIM) capacitor includes forming a first planar dielectric layer with a first metallization layer therein; forming a first passivation layer on top thereof; forming a planar conductive layer above the first passivation layer; patterning and selectively removing the conductive layer up to the first passivation layer in designated areas to form a set of conductive features; patterning and conformally coating the set of conductive features and the exposed first passivation layer with a high strength dielectric coating; disposing a second dielectric layer above the first passivation layer and enclosing the set of conductive features; patterning and selectively removing portions of the second substrate to form channels and trenches; performing a dual-Damascene process to form a second metallization layer in the trenches and channels and to form an upper conductive surface above the high strength dielectric coating.
    Type: Application
    Filed: December 28, 2006
    Publication date: July 3, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Anil K. Chinthakindi, Douglas D. Coolbaugh, Timothy J. Dalton, Ebenezer E. Eshun, Jeffrey P. Gambino, Anthony K. Stamper, Richard P. Volant
  • Publication number: 20080157382
    Abstract: Direct termination of a wiring metal in a semiconductor device. Direct termination of an AlCu stack or an AlCu layer is made with an underlying Cu wiring level. The AlCu stack or AlCu layer covers all of the Cu wiring level such that it has a border that extends beyond all of the wiring to prevent exposure from occurring.
    Type: Application
    Filed: December 28, 2006
    Publication date: July 3, 2008
    Inventors: Anil K. Chinthakindi, Douglas D. Coolbaugh, Timothy J. Dalton, Ebenezer E. Eshun, Anthony K. Stamper, Richard P. Volant
  • Patent number: 7394110
    Abstract: Resistors that avoid the problems of miniaturization of semiconductor devices and a related method are disclosed. In one embodiment, a resistor includes a planar resistor material that extends vertically within at least one metal layer of a semiconductor device. In another embodiment, a resistor includes a resistor material layer extending between a first bond pad and a second bond pad of a semiconductor device. The two embodiments can be used alone or together. A related method for generating the resistors is also disclosed.
    Type: Grant
    Filed: February 6, 2006
    Date of Patent: July 1, 2008
    Assignee: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, Timothy J. Dalton, Daniel C. Edelstein, Ebenezer E. Eshun, Jeffrey P. Gambino, Kevin S. Petrarca, Anthony K. Stamper, Richard P. Volant
  • Publication number: 20080132026
    Abstract: An RF structure that includes an optimum padset for wire bonding and a high performance inductor that contains relatively thick metal inductor wires, both of which are located atop the final interconnect level of an interconnect structure. Specifically, the RF structure includes a dielectric layer having metal inductor wires of a first thickness and a metal bond pad having a major area of a second thickness located on a surface thereof, wherein the first thickness is greater than the second thickness. In the inventive RF structure, the majority of the metal bond pad is thinned for wire bonding, while maintaining the fill metal wire thickness in the other areas of the structure for inductor performance requirements, such as, for example, low resistivity. Methods for fabricating the aforementioned RF structure are also provided.
    Type: Application
    Filed: October 20, 2006
    Publication date: June 5, 2008
    Applicant: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, Zhong-Xiang He, Wolfgang Sauter, Barbara A. Waterhouse
  • Publication number: 20080132027
    Abstract: Resistors that avoid the problems of miniaturization of semiconductor devices and a related method are disclosed. In one embodiment, a resistor includes a planar resistor material that extends vertically within at least one metal layer of a semiconductor device. In another embodiment, a resistor includes a resistor material layer extending between a first bond pad and a second bond pad of a semiconductor device. The two embodiments can be used alone or together. A related method for generating the resistors is also disclosed.
    Type: Application
    Filed: December 12, 2007
    Publication date: June 5, 2008
    Inventors: Douglas D. Coolbaugh, Timothy J. Dalton, Daniel C. Edelstein, Ebenezer E. Eshun, Jeffrey P. Gambino, Kevin S. Petrarca, Anthony K. Stamper, Richard P. Volant