Patents by Inventor Eric S. Shapiro

Eric S. Shapiro has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190158031
    Abstract: Bias circuits and methods for silicon-based amplifier architectures that are tolerant of supply and bias voltage variations, bias current variations, and transistor stack height, and compensate for poor output resistance characteristics. Embodiments include power amplifiers and low-noise amplifiers that utilize a cascode reference circuit to bias the final stages of a cascode amplifier under the control of a closed loop bias control circuit. The closed loop bias control circuit ensures that the current in the cascode reference circuit is approximately equal to a selected multiple of a known current value by adjusting the gate bias voltage to the final stage of the cascode amplifier. The final current through the cascode amplifier is a multiple of the current in the cascode reference circuit, based on a device scaling factor representing the relative sizes of the transistor devices in the cascode amplifier and in the cascode reference circuit.
    Type: Application
    Filed: January 17, 2019
    Publication date: May 23, 2019
    Inventors: Jonathan James Klaren, David Kovac, Eric S. Shapiro, Christopher C. Murphy, Robert Mark Englekirk, Keith Bargroff, Tero Tapio Ranta
  • Patent number: 10256287
    Abstract: Embodiments of systems, methods, and apparatus for improving ESD performance and switching time for semiconductor devices including metal-oxide-semiconductor (MOS) field effect transistors (FETs), and particularly to MOSFETs fabricated on Semiconductor-On-Insulator (“SOI”) and Silicon-On-Sapphire (“SOS”) substrates.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: April 9, 2019
    Assignee: pSemi Corporation
    Inventors: Eric S. Shapiro, Matt Allison
  • Patent number: 10250199
    Abstract: Bias circuits and methods for silicon-based amplifier architectures that are tolerant of supply and bias voltage variations, bias current variations, and transistor stack height, and compensate for poor output resistance characteristics. Embodiments include power amplifiers and low-noise amplifiers that utilize a cascode reference circuit to bias the final stages of a cascode amplifier under the control of a closed loop bias control circuit. The closed loop bias control circuit ensures that the current in the cascode reference circuit is approximately equal to a selected multiple of a known current value by adjusting the gate bias voltage to the final stage of the cascode amplifier. The final current through the cascode amplifier is a multiple of the current in the cascode reference circuit, based on a device scaling factor representing the relative sizes of the transistor devices in the cascode amplifier and in the cascode reference circuit.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: April 2, 2019
    Assignee: pSemi Corporation
    Inventors: Jonathan Klaren, Poojan Wagh, David Kovac, Eric S. Shapiro, Neil Calanca, Dan William Nobbe, Christopher Murphy, Robert Mark Englekirk, Emre Ayranci, Keith Bargroff, Tero Tapio Ranta
  • Publication number: 20190074809
    Abstract: A phase shifter unit cell or a connected set of such cells that can be well isolated from external circuitry and which do not introduce insertion loss into an RF signal path, exhibit good return loss, and further provides additional advantages when combined with bracketing attenuator circuits. More particularly, embodiments integrate a high-isolation function within a phase shifter circuit by breaking the complimentary nature of the control signals to a phase shifter cell to provide greater control of switch states internal to the phase shifter cell and thus enable a distinct high-isolation state, and by including a switchable shunt termination resistor for use in the high-isolation state. Some embodiments are serially coupled to attenuator circuits to enable synergistic interaction that reduces overall die size and/or increases isolation. One such embodiment positions a high-isolation phase shifter cell in accordance with the present invention between bracketing programmable attenuators.
    Type: Application
    Filed: October 31, 2018
    Publication date: March 7, 2019
    Inventors: Eric S. Shapiro, Peter Bacon
  • Publication number: 20190044508
    Abstract: An architecture that increases the power that handling capability of the switches within a transceiver is disclosed. An impedance transformation network is introduced at each of the terminals of a transmit/receive switch. Each impedance transformation network transforms the impedance external to the transmit/receive switch to a lower impedance internal to the switch to increase the power handling capability of the transmit/receive switch.
    Type: Application
    Filed: August 4, 2017
    Publication date: February 7, 2019
    Inventors: Eric S. Shapiro, David Ronald Kirkbride
  • Patent number: 10200026
    Abstract: An architecture that increases the power that handling capability of the switches within a transceiver is disclosed. An impedance transformation network is introduced at each of the terminals of a transmit/receive switch. Each impedance transformation network transforms the impedance external to the transmit/receive switch to a lower impedance internal to the switch to increase the power handling capability of the transmit/receive switch.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: February 5, 2019
    Assignee: pSemi Corporation
    Inventors: Eric S. Shapiro, David Ronald Kirkbride
  • Patent number: 10181850
    Abstract: A high throw-count multiple-pole FET-based RF switch architecture that provides good RF performance in terms of insertion loss, return loss, isolation, linearity, and power handling. A common port RFC is coupled along a common path to multiple ports RFn. Embodiments introduce additional common RF path branch isolation switches which are controlled by state dependent logic. The branch isolation switches help to isolate the unused branch ports RFn and the unused portion of the common path from the active portion of the common path, and thereby reduce the reactive load attributable to such branches that degrades RF performance of the ports RFn “closer” to the common port RFC. The branch isolation switches can also be used to reconfigure the switch architecture for a multiplex function as well as separate switch path banks for re-configurability of purpose, tuning, or varying switch throw counts and packaging options.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: January 15, 2019
    Assignee: pSemi Corporation
    Inventors: Eric S. Shapiro, Payman Shanjani
  • Patent number: 10141910
    Abstract: A phase shifter unit cell or a connected set of such cells that can be well isolated from external circuitry and which do not introduce insertion loss into an RF signal path, exhibit good return loss, and further provides additional advantages when combined with bracketing attenuator circuits. More particularly, embodiments integrate a high-isolation function within a phase shifter circuit by breaking the complimentary nature of the control signals to a phase shifter cell to provide greater control of switch states internal to the phase shifter cell and thus enable a distinct high-isolation state, and by including a switchable shunt termination resistor for use in the high-isolation state. Some embodiments are serially coupled to attenuator circuits to enable synergistic interaction that reduces overall die size and/or increases isolation. One such embodiment positions a high-isolation phase shifter cell in accordance with the present invention between bracketing programmable attenuators.
    Type: Grant
    Filed: February 8, 2016
    Date of Patent: November 27, 2018
    Assignee: pSemi Corporation
    Inventors: Eric S. Shapiro, Peter Bacon
  • Publication number: 20180308922
    Abstract: Embodiments of systems, methods, and apparatus for improving ESD performance and switching time for semiconductor devices including metal-oxide-semiconductor (MOS) field effect transistors (FETs), and particularly to MOSFETs fabricated on Semiconductor-On-Insulator (“SOI”) and Silicon-On-Sapphire (“SOS”) substrates.
    Type: Application
    Filed: March 2, 2018
    Publication date: October 25, 2018
    Inventors: Eric S. Shapiro, Matt Allison
  • Publication number: 20180254777
    Abstract: A high throw-count multiple-pole FET-based RF switch architecture that provides good RF performance in terms of insertion loss, return loss, isolation, linearity, and power handling. A common port RFC is coupled along a common path to multiple ports RFn. Embodiments introduce additional common RF path branch isolation switches which are controlled by state dependent logic. The branch isolation switches help to isolate the unused branch ports RFn and the unused portion of the common path from the active portion of the common path, and thereby reduce the reactive load attributable to such branches that degrades RF performance of the ports RFn “closer” to the common port RFC. The branch isolation switches can also be used to reconfigure the switch architecture for a multiplex function as well as separate switch path banks for re-configurability of purpose, tuning, or varying switch throw counts and packaging options.
    Type: Application
    Filed: May 3, 2018
    Publication date: September 6, 2018
    Inventors: Eric S. Shapiro, Payman Shanjani
  • Patent number: 10069481
    Abstract: An electronic system that includes a digitally selectable phase shifter circuit and an insertion loss fine adjustment circuit such that the system as a whole exhibits little or no change in insertion loss when changing phase state, and/or a digitally selectable attenuator circuit and a phase fine adjustment circuit such that the system as a whole exhibits little or no effect on phase when changing attenuation state. Included are methods for selecting adjustment control words for such circuits.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: September 4, 2018
    Assignee: pSemi Corporation
    Inventors: Matt Allison, Eric S. Shapiro
  • Publication number: 20180212591
    Abstract: An electronic system that includes a digitally selectable phase shifter circuit and an insertion loss fine adjustment circuit such that the system as a whole exhibits little or no change in insertion loss when changing phase state, and/or a digitally selectable attenuator circuit and a phase fine adjustment circuit such that the system as a whole exhibits little or no effect on phase when changing attenuation state. Included are methods for selecting adjustment control words for such circuits.
    Type: Application
    Filed: December 12, 2017
    Publication date: July 26, 2018
    Inventors: Matt Allison, Eric S. Shapiro
  • Publication number: 20180167062
    Abstract: Implementing a series gate resistor in a switching circuit results in several performance improvements. Few examples are better insertion loss, lower breakdown voltage requirements and a lower frequency corner. These benefits come at the expense of a slower switching time. Methods and devices offering solutions to this problem are described. Using a concept of bypassing the series gate resistor during transition time, a fast switching time can be achieved while the above-mentioned performance improvements are maintained.
    Type: Application
    Filed: December 12, 2016
    Publication date: June 14, 2018
    Inventors: Payman Shanjani, Eric S. Shapiro
  • Publication number: 20180167064
    Abstract: A switch architecture suitable for use in high frequency RF applications. A switching circuit includes a common port and one or more user ports, any of which may be selectively coupled to the common port by closing an associated path switch; non-selected, unused ports are isolated from the common port by opening an associated path switch. Between each path switch and a port are associated split shunt switches for selectively coupling an associated signal path to circuit ground. Between each path switch and a port is an associated split absorptive switch module. Each split absorptive switch module includes a split resistor coupled in parallel with a switch. The combination of the split resistor and the switch of the split absorptive switch module is placed in series with a corresponding signal path from each port to the common port.
    Type: Application
    Filed: December 13, 2016
    Publication date: June 14, 2018
    Inventor: Eric S. Shapiro
  • Patent number: 9991889
    Abstract: A high throw-count multiple-pole FET-based RF switch architecture that provides good RF performance in terms of insertion loss, return loss, isolation, linearity, and power handling. A common port RFC is coupled along a common path to multiple ports RFn. Embodiments introduce additional common RF path branch isolation switches which are controlled by state dependent logic. The branch isolation switches help to isolate the unused branch ports RFn and the unused portion of the common path from the active portion of the common path, and thereby reduce the reactive load attributable to such branches that degrades RF performance of the ports RFn “closer” to the common port RFC. The branch isolation switches can also be used to reconfigure the switch architecture for a multiplex function as well as separate switch path banks for re-configurability of purpose, tuning, or varying switch throw counts and packaging options.
    Type: Grant
    Filed: February 9, 2016
    Date of Patent: June 5, 2018
    Assignee: pSemi Corporation
    Inventors: Eric S. Shapiro, Payman Shanjani
  • Patent number: 9941347
    Abstract: Embodiments of systems, methods, and apparatus for improving ESD performance and switching time for semiconductor devices including metal-oxide-semiconductor (MOS) field effect transistors (FETs), and particularly to MOSFETs fabricated on Semiconductor-On-Insulator (“SOI”) and Silicon-On-Sapphire (“SOS”) substrates.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: April 10, 2018
    Assignee: pSemi Corporation
    Inventors: Eric S. Shapiro, Matt Allison
  • Publication number: 20180083578
    Abstract: Bias circuits and methods for silicon-based amplifier architectures that are tolerant of supply and bias voltage variations, bias current variations, and transistor stack height, and compensate for poor output resistance characteristics. Embodiments include power amplifiers and low-noise amplifiers that utilize a cascode reference circuit to bias the final stages of a cascode amplifier under the control of a closed loop bias control circuit. The closed loop bias control circuit ensures that the current in the cascode reference circuit is approximately equal to a selected multiple of a known current value by adjusting the gate bias voltage to the final stage of the cascode amplifier. The final current through the cascode amplifier is a multiple of the current in the cascode reference circuit, based on a device scaling factor representing the relative sizes of the transistor devices in the cascode amplifier and in the cascode reference circuit.
    Type: Application
    Filed: September 16, 2016
    Publication date: March 22, 2018
    Inventors: Jonathan Klaren, Poojan Wagh, David Kovac, Eric S. Shapiro, Neil Calanca, Dan William Nobbe, Christopher Murphy, Robert Mark Englekirk, Emre Ayranci, Keith Bargroff, Tero Tapio Ranta
  • Patent number: 9906208
    Abstract: An electronic system that includes a digitally selectable phase shifter circuit and an insertion loss fine adjustment circuit such that the system as a whole exhibits little or no change in insertion loss when changing phase state, and/or a digitally selectable attenuator circuit and a phase fine adjustment circuit such that the system as a whole exhibits little or no effect on phase when changing attenuation state. Included are methods for selecting adjustment control words for such circuits.
    Type: Grant
    Filed: March 17, 2017
    Date of Patent: February 27, 2018
    Assignee: Peregrine Semiconductor Corporation
    Inventors: Matt Allison, Eric S. Shapiro
  • Publication number: 20170363676
    Abstract: A stack of series coupled transistors comprising, at least two sub-portions of the stack of series coupled transistors, and at least one logic decoder coupled to the at least two sub-portions to turn ON at least one sub-portion.
    Type: Application
    Filed: June 21, 2016
    Publication date: December 21, 2017
    Inventor: Eric S. Shapiro
  • Publication number: 20170338298
    Abstract: Embodiments of systems, methods, and apparatus for improving ESD performance and switching time for semiconductor devices including metal-oxide-semiconductor (MOS) field effect transistors (FETs), and particularly to MOSFETs fabricated on Semiconductor-On-Insulator (“SOI”) and Silicon-On-Sapphire (“SOS”) substrates.
    Type: Application
    Filed: April 24, 2017
    Publication date: November 23, 2017
    Inventors: Eric S. Shapiro, Matt Allison