Patents by Inventor Frederick T. Brady

Frederick T. Brady has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11979675
    Abstract: Image sensing devices are disclosed. In one example, an image sensing device includes a pixel unit cell with both event sensing (EVS) pixels and imaging pixels. The EVS and imaging pixels are configured to include event sensing and imaging pixel transistors formed in the same transistor layer of an integrated circuit assembly that also includes the photodiodes of the EVS and imaging pixels. The photodiodes are separated by a rear deep trench isolation (RDTI), and the EVS and imaging pixel transistors are arranged along (e.g., underneath) boundary areas formed by the RDTI, maximizing the space available for the photodiodes and economizing on wiring requirements for the EVS and imaging pixels.
    Type: Grant
    Filed: April 25, 2022
    Date of Patent: May 7, 2024
    Assignee: Sony Semiconductor Solutions Corporation
    Inventors: Hongyi Mi, Frederick T. Brady, Sungin Han, Pooria Mostafalu
  • Patent number: 11929383
    Abstract: A pixelated image sensor capable of simultaneously supporting an EVS mode and an image-frame capture mode of operation. An individual pixel of the sensor comprises two distinct sets of subpixels involved in the two modes, respectively, and at least two corresponding, functionally different and independent electrical circuits. The metal interconnect structure of the image-sensor IC is implemented using a wiring topology in which spatial overlap between the wirings of the two electrical circuits is optimized (e.g., minimized) to reduce inter-circuit crosstalk when the two circuits are active at the same time. Such wiring topology may be beneficial, e.g., due to the resulting improvements in the image quality for both operating modes.
    Type: Grant
    Filed: March 23, 2022
    Date of Patent: March 12, 2024
    Assignee: Sony Semiconductor Solutions Corporation
    Inventors: Hongyi Mi, Frederick T. Brady, Sungin Han, Pooria Mostafalu
  • Publication number: 20230345147
    Abstract: Image sensing devices are disclosed. In one example, an image sensing device includes a pixel unit cell with both event sensing (EVS) pixels and imaging pixels. The EVS and imaging pixels are configured to include event sensing and imaging pixel transistors formed in the same transistor layer of an integrated circuit assembly that also includes the photodiodes of the EVS and imaging pixels. The photodiodes are separated by a rear deep trench isolation (RDTI), and the EVS and imaging pixel transistors are arranged along (e.g., underneath) boundary areas formed by the RDTI, maximizing the space available for the photodiodes and economizing on wiring requirements for the EVS and imaging pixels.
    Type: Application
    Filed: April 25, 2022
    Publication date: October 26, 2023
    Inventors: Hongyi Mi, Frederick T. Brady, Sungin Han, Pooria Mostafalu
  • Publication number: 20230336881
    Abstract: Binning in a hybrid pixel structure of image pixels and event vision sensor (EVS) pixels. In one embodiment, the imaging sensor includes a pixel array including a plurality of pixel circuits and a plurality of binning transistors. A first portion of the plurality of pixel circuits individually includes an intensity photodiode. A second portion of the plurality of pixel circuits individually includes an event vision sensor (EVS) photodiode. The plurality of binning transistors is configured to bin together at least one of the first portion or the second portion.
    Type: Application
    Filed: April 15, 2022
    Publication date: October 19, 2023
    Inventors: Pooria Mostafalu, Frederick T. Brady, Sungin Han, Hongyi Mi
  • Publication number: 20230326952
    Abstract: A pixelated image sensor capable of simultaneously supporting an EVS mode and an image-frame capture mode of operation. An individual pixel of the sensor comprises two distinct sets of subpixels involved in the two modes, respectively, and at least two corresponding, functionally different and independent electrical circuits. The metal interconnect structure of the image-sensor IC is implemented using a wiring topology in which spatial overlap between the wirings of the two electrical circuits is optimized (e.g., minimized) to reduce inter-circuit crosstalk when the two circuits are active at the same time. Such wiring topology may be beneficial, e.g., due to the resulting improvements in the image quality for both operating modes.
    Type: Application
    Filed: March 23, 2022
    Publication date: October 12, 2023
    Inventors: Hongyi Mi, Frederick T. Brady, Sungin Han, Pooria Mostafalu
  • Patent number: 8194178
    Abstract: A microshutter array has a frame having a light transmissive portion. Linear microshutter elements extend across the light transmissive portion and in parallel to each other. Each microshutter element has a flat blade extended in a length direction and first and second torsion arms extending outwards from each side of the blade in the length direction, the blade extending across the light transmissive portion. A control circuit provides a separately-controlled and independent voltage that is applied to each of the linear microshutter elements. A controller sets the respective voltages applied to each of the linear microshutter elements.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: June 5, 2012
    Assignee: OmniVision Technologies, Inc.
    Inventors: Frederick T. Brady, Robert M. Guidash, J. Kelly Lee, Marek W. Kowarz, Robert Andosca
  • Patent number: 8119435
    Abstract: A backside illuminated image sensor comprises a sensor layer having a plurality of photosensitive elements of a pixel array, an oxide layer adjacent a backside surface of the sensor layer, and at least one dielectric layer adjacent a frontside surface of the sensor layer. A color filter array is formed on a backside surface of the oxide layer, and a transparent cover is attached to the backside surface of the oxide layer overlying the color filter array. Redistribution metal conductors are in electrical contact with respective bond pad conductors through respective openings in the dielectric layer. A redistribution passivation layer is formed over the redistribution metal conductors, and contact metallizations are in electrical contact with respective ones of the respective redistribution metal conductors through respective openings in the redistribution passivation layer. The image sensor may be implemented in a digital camera or other type of digital imaging device.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: February 21, 2012
    Assignee: OmniVision Technologies, Inc.
    Inventor: Frederick T. Brady
  • Patent number: 8076170
    Abstract: A backside illuminated image sensor comprises a sensor layer implementing a plurality of photosensitive elements of a pixel array, an oxide layer adjacent a backside surface of the sensor layer, and at least one dielectric layer adjacent a frontside surface of the sensor layer. The sensor layer further comprises a plurality of backside trenches formed in the backside surface of the sensor layer and arranged to provide isolation between respective pairs of the photosensitive elements. The backside trenches have corresponding backside field isolation implant regions formed in the sensor layer, and the resulting structure provides reductions in carrier recombination and crosstalk between adjacent photosensitive elements. The image sensor may be implemented in a digital camera or other type of digital imaging device.
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: December 13, 2011
    Assignee: OmniVision Technologies, Inc.
    Inventor: Frederick T. Brady
  • Publication number: 20110285880
    Abstract: A backside illuminated image sensor includes a sensor layer comprising photosensitive elements of the pixel array, an epitaxial layer formed on a frontside surface of the sensor layer, and a color filter array formed on a backside surface of the sensor layer. The epitaxial layer comprises polysilicon color filter array alignment marks formed in locations corresponding to respective color filter array alignment mark openings in the frontside surface of the sensor layer. The color filter array is aligned to the color filter array alignment marks of the epitaxial layer. The image sensor may be implemented in a digital camera or other type of digital imaging device.
    Type: Application
    Filed: July 29, 2011
    Publication date: November 24, 2011
    Applicant: OMNIVISION TECHNOLOGIES, INC.
    Inventor: Frederick T. Brady
  • Patent number: 8017426
    Abstract: A backside illuminated image sensor includes a sensor layer comprising photosensitive elements of the pixel array, an epitaxial layer formed on a frontside surface of the sensor layer, and a color filter array formed on a backside surface of the sensor layer. The epitaxial layer comprises polysilicon color filter array alignment marks formed in locations corresponding to respective color filter array alignment mark openings in the frontside surface of the sensor layer. The color filter array is aligned to the color filter array alignment marks of the epitaxial layer. The image sensor may be implemented in a digital camera or other type of digital imaging device.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: September 13, 2011
    Assignee: Omnivision Technologies, Inc.
    Inventor: Frederick T. Brady
  • Publication number: 20110115957
    Abstract: A backside illuminated image sensor comprises a sensor layer implementing a plurality of photosensitive elements of a pixel array, and an oxide layer adjacent a backside surface of the sensor layer. The sensor layer comprises a seed layer and an epitaxial layer formed over the seed layer, with the seed layer having a cross-sectional doping profile in which a designated dopant is substantially confined to a pixel array area of the sensor layer. The doping profile advantageously reduces dark current generated at an interface between the sensor layer and the oxide layer. The image sensor may be implemented in a digital camera or other type of digital imaging device.
    Type: Application
    Filed: January 25, 2011
    Publication date: May 19, 2011
    Inventors: Frederick T. Brady, John P. McCarten
  • Patent number: 7915067
    Abstract: A backside illuminated image sensor comprises a sensor layer implementing a plurality of photosensitive elements of a pixel array, and an oxide layer adjacent a backside surface of the sensor layer. The sensor layer comprises a seed layer and an epitaxial layer formed over the seed layer, with the seed layer having a cross-sectional doping profile in which a designated dopant is substantially confined to a pixel array area of the sensor layer. The doping profile advantageously reduces dark current generated at an interface between the sensor layer and the oxide layer. The image sensor may be implemented in a digital camera or other type of digital imaging device.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: March 29, 2011
    Assignee: Eastman Kodak Company
    Inventors: Frederick T. Brady, John P. McCarten
  • Publication number: 20110059572
    Abstract: A backside illuminated image sensor comprises a sensor layer implementing a plurality of photosensitive elements of a pixel array, an oxide layer adjacent a backside surface of the sensor layer, and at least one dielectric layer adjacent a frontside surface of the sensor layer. The sensor layer further comprises a plurality of backside trenches formed in the backside surface of the sensor layer and arranged to provide isolation between respective pairs of the photosensitive elements. The backside trenches have corresponding backside field isolation implant regions formed in the sensor layer, and the resulting structure provides reductions in carrier recombination and crosstalk between adjacent photosensitive elements. The image sensor may be implemented in a digital camera or other type of digital imaging device.
    Type: Application
    Filed: November 11, 2010
    Publication date: March 10, 2011
    Inventor: Frederick T. Brady
  • Publication number: 20110042770
    Abstract: A backside illuminated image sensor comprises a sensor layer having a plurality of photosensitive elements of a pixel array, an oxide layer adjacent a backside surface of the sensor layer, and at least one dielectric layer adjacent a frontside surface of the sensor layer. A color filter array is formed on a backside surface of the oxide layer, and a transparent cover is attached to the backside surface of the oxide layer overlying the color filter array. Redistribution metal conductors are in electrical contact with respective bond pad conductors through respective openings in the dielectric layer. A redistribution passivation layer is formed over the redistribution metal conductors, and contact metallizations are in electrical contact with respective ones of the respective redistribution metal conductors through respective openings in the redistribution passivation layer. The image sensor may be implemented in a digital camera or other type of digital imaging device.
    Type: Application
    Filed: November 5, 2010
    Publication date: February 24, 2011
    Inventor: Frederick T. Brady
  • Patent number: 7859033
    Abstract: A backside illuminated image sensor comprises a sensor layer having a plurality of photosensitive elements of a pixel array, an oxide layer adjacent a backside surface of the sensor layer, and at least one dielectric layer adjacent a frontside surface of the sensor layer. A color filter array is formed on a backside surface of the oxide layer, and a transparent cover is attached to the backside surface of the oxide layer overlying the color filter array. Redistribution metal conductors are in electrical contact with respective bond pad conductors through respective openings in the dielectric layer. A redistribution passivation layer is formed over the redistribution metal conductors, and contact metallizations are in electrical contact with respective ones of the respective redistribution metal conductors through respective openings in the redistribution passivation layer. The image sensor may be implemented in a digital camera or other type of digital imaging device.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: December 28, 2010
    Assignee: Eastman Kodak Company
    Inventor: Frederick T. Brady
  • Patent number: 7821046
    Abstract: A method and structure for providing a high energy implant in only the red pixel location of a CMOS image sensor. The implant increases the photon collection depth for the red pixels, which in turn increases the quantum efficiency for the red pixels. In one embodiment, a CMOS image sensor is formed on an p-type substrate and the high energy implant is a p-type implant that creates a p-type ground contact under the red pixel, thus reducing dark non-uniformity effects. In another embodiment, a CMOS image sensor is formed on an n-type substrate and a high energy p-type implant creates a p-type region under only the red pixel to increase photon collection depth, which in turn increases the quantum efficiency for the red pixels.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: October 26, 2010
    Assignee: Aptina Imaging Corporation
    Inventor: Frederick T. Brady
  • Publication number: 20100182496
    Abstract: A microshutter array has a frame having a light transmissive portion. Linear microshutter elements extend across the light transmissive portion and in parallel to each other. Each microshutter element has a flat blade extended in a length direction and first and second torsion arms extending outwards from each side of the blade in the length direction, the blade extending across the light transmissive portion. A control circuit provides a separately-controlled and independent voltage that is applied to each of the linear microshutter elements. A controller sets the respective voltages applied to each of the linear microshutter elements.
    Type: Application
    Filed: November 12, 2009
    Publication date: July 22, 2010
    Inventors: Frederick T. Brady, Robert M. Guidash, J. Kelly Lee, Marek W. Kowarz, Robert Andosca
  • Publication number: 20100148295
    Abstract: A semiconductor wafer includes one or more back-illuminated image sensors each formed in a portion of the semiconductor wafer. One or more thinning etch stops are formed in other portions of the semiconductor wafer.
    Type: Application
    Filed: September 23, 2009
    Publication date: June 17, 2010
    Inventors: Frederick T. Brady, Robert M. Guidash
  • Publication number: 20100006970
    Abstract: A backside illuminated image sensor comprises a sensor layer implementing a plurality of photosensitive elements of a pixel array, and an oxide layer adjacent a backside surface of the sensor layer. The sensor layer comprises a seed layer and an epitaxial layer formed over the seed layer, with the seed layer having a cross-sectional doping profile in which a designated dopant is substantially confined to a pixel array area of the sensor layer. The doping profile advantageously reduces dark current generated at an interface between the sensor layer and the oxide layer. The image sensor may be implemented in a digital camera or other type of digital imaging device.
    Type: Application
    Filed: July 9, 2008
    Publication date: January 14, 2010
    Inventors: Frederick T. Brady, John P. McCarten
  • Publication number: 20100006963
    Abstract: A backside illuminated image sensor comprises a sensor layer having a plurality of photosensitive elements of a pixel array, an oxide layer adjacent a backside surface of the sensor layer, and at least one dielectric layer adjacent a frontside surface of the sensor layer. A color filter array is formed on a backside surface of the oxide layer, and a transparent cover is attached to the backside surface of the oxide layer overlying the color filter array. Redistribution metal conductors are in electrical contact with respective bond pad conductors through respective openings in the dielectric layer. A redistribution passivation layer is formed over the redistribution metal conductors, and contact metallizations are in electrical contact with respective ones of the respective redistribution metal conductors through respective openings in the redistribution passivation layer. The image sensor may be implemented in a digital camera or other type of digital imaging device.
    Type: Application
    Filed: July 9, 2008
    Publication date: January 14, 2010
    Inventor: Frederick T. Brady