Patents by Inventor Fumihiko Koga

Fumihiko Koga has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11793009
    Abstract: An imaging device includes a first electrode, a charge accumulating electrode arranged with a space from the first electrode, an isolation electrode arranged with a space from the first electrode and the charge accumulating electrode and surrounding the charge accumulating electrode, a photoelectric conversion layer formed in contact with the first electrode and above the charge accumulating electrode with an insulating layer interposed therebetween, and a second electrode formed on the photoelectric conversion layer. The isolation electrode includes a first isolation electrode and a second isolation electrode arranged with a space from the first isolation electrode, and the first isolation electrode is positioned between the first electrode and the second isolation electrode.
    Type: Grant
    Filed: November 3, 2022
    Date of Patent: October 17, 2023
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Yukio Kaneda, Fumihiko Koga
  • Patent number: 11792541
    Abstract: A solid-state imaging device according to an embodiment of the disclosure includes a first electrode, a second electrode, a photoelectric conversion layer, and a voltage applier. The first electrode includes a plurality of electrodes independent from each other. The second electrode is disposed opposite to the first electrode. The photoelectric conversion layer is disposed between the first electrode and the second electrode. The voltage applier applies different voltages to at least one of the first electrode or the second electrode during a charge accumulation period and a charge non-accumulation period.
    Type: Grant
    Filed: September 2, 2022
    Date of Patent: October 17, 2023
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Taiichiro Watanabe, Tetsuji Yamaguchi, Yusuke Sato, Fumihiko Koga
  • Publication number: 20230326953
    Abstract: An imaging element has at least a photoelectric conversion section, a first transistor TR1, and a second transistor TR2, the photoelectric conversion section includes a photoelectric conversion layer 13, a first electrode 11, and a second electrode 12, the imaging element further has a first photoelectric conversion layer extension section 13A, a third electrode 51, and a fourth electrode 51C, the first transistor TR1 includes the second electrode 12 that functions as one source/drain section, the third electrode that functions as a gate section 51, and the first photoelectric conversion layer extension section 13A that functions as the other source/drain section, and the first transistor TR1 (TRrst) is provided adjacent to the photoelectric conversion section.
    Type: Application
    Filed: May 15, 2023
    Publication date: October 12, 2023
    Applicant: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventor: Fumihiko KOGA
  • Publication number: 20230317750
    Abstract: An imaging element includes a photoelectric conversion unit including a first electrode 11, a photoelectric conversion layer 13, and a second electrode 12 that are stacked, in which the photoelectric conversion unit further includes a charge storage electrode 14 arranged apart from the first electrode 11 and arranged to face the photoelectric conversion layer 13 through an insulating layer 82, and when photoelectric conversion occurs in the photoelectric conversion layer 13 after light enters the photoelectric conversion layer 13, an absolute value of a potential applied to a part 13C of the photoelectric conversion layer 13 facing the charge storage electrode 14 is a value larger than an absolute value of a potential applied to a region 13B of the photoelectric conversion layer 13 positioned between the imaging element and an adjacent imaging element.
    Type: Application
    Filed: June 1, 2023
    Publication date: October 5, 2023
    Inventors: Taiichiro WATANABE, Fumihiko KOGA, Kyosuke ITO, Hideaki TOGASHI, Yusaku SUGIMORI
  • Patent number: 11765483
    Abstract: Provided is a solid-state imaging device, including a first electrode formed on a semiconductor layer, a photoelectric conversion layer formed on the first electrode, a second electrode formed on the photoelectric conversion layer, and a third electrode disposed between the first electrode and an adjacent first electrode, and electrically insulated. A voltage of the third electrode is controlled to a voltage corresponding to a detection result which can contribute to control of discharge of charges or assist for transfer of charges. The detection results corresponds to one of light or temperature and the voltage of third electrode is controlled according to an output of a frame image obtained before exposure.
    Type: Grant
    Filed: March 25, 2022
    Date of Patent: September 19, 2023
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Yuji Uesugi, Fumihiko Koga, Keisuke Hatano
  • Patent number: 11750952
    Abstract: There is provided an imaging element includes a photoelectric conversion unit that includes a first electrode, a photoelectric conversion layer, and a second electrode, in which the photoelectric conversion unit further includes a charge storage electrode that has an opposite region opposite to the first electrode via an insulating layer, and a transfer control electrode that is opposite to the first electrode and the charge storage electrode via the insulating layer, and the photoelectric conversion layer is disposed above at least the charge storage electrode via the insulating layer.
    Type: Grant
    Filed: August 31, 2022
    Date of Patent: September 5, 2023
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Yusuke Sato, Fumihiko Koga
  • Patent number: 11742369
    Abstract: The present technology relates to a solid-state image sensing device capable of restricting a deterioration in photoelectric conversion characteristic of a photoelectric conversion unit, and an electronic device. A solid-state image sensing device includes: a photoelectric conversion unit formed outside a semiconductor substrate; a charge holding unit for holding signal charges generated by the photoelectric conversion unit; a reset transistor for resetting the potential of the charge holding unit; a capacitance switching transistor connected to the charge holding unit and directed for switching the capacitance of the charge holding unit; and an additional capacitance device connected to the capacitance switching transistor. The present technology is applicable to solid-state image sensing devices and the like, for example.
    Type: Grant
    Filed: December 3, 2021
    Date of Patent: August 29, 2023
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventor: Fumihiko Koga
  • Publication number: 20230254596
    Abstract: An image processor according to the present disclosure includes: an image segmentation processing section to generate a plurality of first map data on the basis of first image map data including a plurality of pixel values, the plurality of first map data having arrangement patterns of pixel values different from each other and including pixel values located at positions different from each other; an interpolation processing section to generate a plurality of second map data by determining a pixel value at a position where no pixel value is present in each of the plurality of first map data with use of interpolation processing; and a synthesis processing section to generate third map data by generating, on the basis of pixel values at positions corresponding to each other in the plurality of second map data, a pixel value at a position corresponding to the positions.
    Type: Application
    Filed: April 17, 2023
    Publication date: August 10, 2023
    Applicant: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Fumihiko KOGA, Tetsuji YAMAGUCHI
  • Patent number: 11699719
    Abstract: An imaging element has at least a photoelectric conversion section, a first transistor TR1, and a second transistor TR2, the photoelectric conversion section includes a photoelectric conversion layer 13, a first electrode 11, and a second electrode 12, the imaging element further has a first photoelectric conversion layer extension section 13A, a third electrode 51, and a fourth electrode 51C, the first transistor TR1 includes the second electrode 12 that functions as one source/drain section, the third electrode that functions as a gate section 51, and the first photoelectric conversion layer extension section 13A that functions as the other source/drain section, and the first transistor TR1 (TRrst) is provided adjacent to the photoelectric conversion section.
    Type: Grant
    Filed: May 5, 2021
    Date of Patent: July 11, 2023
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventor: Fumihiko Koga
  • Publication number: 20230217103
    Abstract: The present disclosure relates to a solid-state imaging device, a method for driving the solid-state imaging device, and an electronic device capable of improving auto-focusing accuracy by using a phase difference signal obtained by using a photoelectric conversion film. The solid-state imaging device includes a pixel including a photoelectric conversion portion having a structure where a photoelectric conversion film is interposed by an upper electrode on the photoelectric conversion film and a lower electrode under the photoelectric conversion film. The upper electrode is divided into a first upper electrode and a second upper electrode. The present disclosure can be applied to, for example, a solid-state imaging device or the like.
    Type: Application
    Filed: March 13, 2023
    Publication date: July 6, 2023
    Applicant: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Keisuke HATANO, Fumihiko KOGA, Tetsuji YAMAGUCHI, Shinichiro IZAWA
  • Patent number: 11670659
    Abstract: An imaging element includes a photoelectric conversion unit including a first electrode 11, a photoelectric conversion layer 13, and a second electrode 12 that are stacked, in which the photoelectric conversion unit further includes a charge storage electrode 14 arranged apart from the first electrode 11 and arranged to face the photoelectric conversion layer 13 through an insulating layer 82, and when photoelectric conversion occurs in the photoelectric conversion layer 13 after light enters the photoelectric conversion layer 13, an absolute value of a potential applied to a part 13C of the photoelectric conversion layer 13 facing the charge storage electrode 14 is a value larger than an absolute value of a potential applied to a region 13B of the photoelectric conversion layer 13 positioned between the imaging element and an adjacent imaging element.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: June 6, 2023
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Taiichiro Watanabe, Fumihiko Koga, Kyosuke Ito, Hideaki Togashi, Yusaku Sugimori
  • Patent number: 11665440
    Abstract: An image processor according to the present disclosure includes: an image segmentation processing section to generate a plurality of first map data on the basis of first image map data including a plurality of pixel values, the plurality of first map data having arrangement patterns of pixel values different from each other and including pixel values located at positions different from each other; an interpolation processing section to generate a plurality of second map data by determining a pixel value at a position where no pixel value is present in each of the plurality of first map data with use of interpolation processing; and a synthesis processing section to generate third map data by generating, on the basis of pixel values at positions corresponding to each other in the plurality of second map data, a pixel value at a position corresponding to the positions.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: May 30, 2023
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Fumihiko Koga, Tetsuji Yamaguchi
  • Publication number: 20230142577
    Abstract: The present technology relates to a solid-state imaging device that can improve imaging quality by reducing variation in the voltage of a charge retention unit, a method of driving the solid-state imaging device, and an electronic apparatus. A first photoelectric conversion unit generates and accumulates signal charge by receiving light that has entered a pixel, and photoelectrically converting the light. A first charge retention unit retains the generated signal charge. A first output transistor outputs the signal charge in the first charge retention unit as a pixel signal, when the pixel is selected by the first select transistor. A first voltage control transistor controls the voltage of the output end of the first output transistor. The present technology can be applied to pixels in solid-state imaging devices, for example.
    Type: Application
    Filed: January 5, 2023
    Publication date: May 11, 2023
    Applicant: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventor: Fumihiko KOGA
  • Patent number: 11632494
    Abstract: The present disclosure relates to a solid-state imaging device, a method for driving the solid-state imaging device, and an electronic device capable of improving auto-focusing accuracy by using a phase difference signal obtained by using a photoelectric conversion film. The solid-state imaging device includes a pixel including a photoelectric conversion portion having a structure where a photoelectric conversion film is interposed by an upper electrode on the photoelectric conversion film and a lower electrode under the photoelectric conversion film. The upper electrode is divided into a first upper electrode and a second upper electrode. The present disclosure can be applied to, for example, a solid-state imaging device or the like.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: April 18, 2023
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Keisuke Hatano, Fumihiko Koga, Tetsuji Yamaguchi, Shinichiro Izawa
  • Patent number: 11621290
    Abstract: A solid-state imaging element includes a pixel including a first imaging element, a second imaging element, a third imaging element, and an on-chip micro lens 90. The first imaging element includes a first electrode 11, a third electrode 12, and a second electrode 16. The pixel further includes a third electrode control line VOA connected to the third electrode 12 and a plurality of control lines 62B connected to various transistors included in the second and third imaging elements and different from the third electrode control line VOA. In the pixel, a distance between the center of the on-chip micro lens 90 included in the pixel and any one of the plurality of control lines 62B included in the pixel is shorter than a distance between the center of the on-chip micro lens 90 included in the pixel and the third electrode control line VOA included in the pixel.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: April 4, 2023
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Nobuhiro Kawai, Hideaki Togashi, Fumihiko Koga, Tetsuji Yamaguchi, Shintarou Hirata, Taiichiro Watanabe, Yoshihiro Ando
  • Publication number: 20230068319
    Abstract: An imaging device includes a first electrode, a charge accumulating electrode arranged with a space from the first electrode, an isolation electrode arranged with a space from the first electrode and the charge accumulating electrode and surrounding the charge accumulating electrode, a photoelectric conversion layer formed in contact with the first electrode and above the charge accumulating electrode with an insulating layer interposed therebetween, and a second electrode formed on the photoelectric conversion layer. The isolation electrode includes a first isolation electrode and a second isolation electrode arranged with a space from the first isolation electrode, and the first isolation electrode is positioned between the first electrode and the second isolation electrode.
    Type: Application
    Filed: November 3, 2022
    Publication date: March 2, 2023
    Applicant: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Yukio KANEDA, Fumihiko KOGA
  • Patent number: 11575847
    Abstract: The present technology relates to a solid-state imaging device that can improve imaging quality by reducing variation in the voltage of a charge retention unit, a method of driving the solid-state imaging device, and an electronic apparatus. A first photoelectric conversion unit generates and accumulates signal charge by receiving light that has entered a pixel, and photoelectrically converting the light. A first charge retention unit retains the generated signal charge. A first output transistor outputs the signal charge in the first charge retention unit as a pixel signal, when the pixel is selected by the first select transistor. A first voltage control transistor controls the voltage of the output end of the first output transistor. The present technology can be applied to pixels in solid-state imaging devices, for example.
    Type: Grant
    Filed: February 25, 2021
    Date of Patent: February 7, 2023
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventor: Fumihiko Koga
  • Patent number: 11563058
    Abstract: An imaging device includes a first electrode, a charge accumulating electrode arranged with a space from the first electrode, an isolation electrode arranged with a space from the first electrode and the charge accumulating electrode and surrounding the charge accumulating electrode, a photoelectric conversion layer formed in contact with the first electrode and above the charge accumulating electrode with an insulating layer interposed therebetween, and a second electrode formed on the photoelectric conversion layer. The isolation electrode includes a first isolation electrode and a second isolation electrode arranged with a space from the first isolation electrode, and the first isolation electrode is positioned between the first electrode and the second isolation electrode.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: January 24, 2023
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Yukio Kaneda, Fumihiko Koga
  • Publication number: 20230013285
    Abstract: A light receiving element including: a semiconductor substrate; a photoelectric conversion unit (PD) in the semiconductor substrate that converts light into electric charges; a first electric charge accumulation unit (MEM) in the semiconductor substrate to which the electric charges are transferred from the photoelectric conversion unit; a first distribution gate on a front surface of the semiconductor substrate that distributes the electric charges from the photoelectric conversion unit to the first electric charge accumulation unit; a second electric charge accumulation unit (MEM) in the semiconductor substrate to which the electric charges are transferred from the photoelectric conversion unit; and a second distribution gate on the front surface of the semiconductor substrate that distributes the electric charges from the photoelectric conversion unit to the second electric charge accumulation unit, in which the first and second distribution gates each have a pair of buried gate portions.
    Type: Application
    Filed: December 14, 2020
    Publication date: January 19, 2023
    Applicant: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Yuhi YORIKADO, Yoshiki EBIKO, Suzunori ENDO, Nobuhiro KAWAI, Fumihiko KOGA, Nobuo NAKAMURA, Sozo YOKOGAWA, Hayato WAKABAYASHI
  • Publication number: 20230007206
    Abstract: There is provided an imaging element includes a photoelectric conversion unit that includes a first electrode, a photoelectric conversion layer, and a second electrode, in which the photoelectric conversion unit further includes a charge storage electrode that has an opposite region opposite to the first electrode via an insulating layer, and a transfer control electrode that is opposite to the first electrode and the charge storage electrode via the insulating layer, and the photoelectric conversion layer is disposed above at least the charge storage electrode via the insulating layer.
    Type: Application
    Filed: August 31, 2022
    Publication date: January 5, 2023
    Inventors: YUSUKE SATO, FUMIHIKO KOGA