Patents by Inventor G. R. Mohan Rao

G. R. Mohan Rao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11967369
    Abstract: A flash controller for managing at least one MLC non-volatile memory module and at least one SLC non-volatile memory module. The flash controller is adapted to determine if a range of addresses listed by an entry and mapped to said at least one MLC nonvolatile memory module fails a data integrity test. In the event of such a failure, the controller remaps said entry to an equivalent range of addresses of said at least one SLC non-volatile memory module. The flash controller is further adapted to determine which of the blocks in the MIX and SLC nonvolatile memory modules are accessed most frequently and allocating those blocks that receive frequent writes to the SLC non-volatile memory module and those blocks that receive infrequent writes to the MLC non-volatile memory module.
    Type: Grant
    Filed: November 7, 2023
    Date of Patent: April 23, 2024
    Assignee: Vervain, LLC
    Inventor: G. R. Mohan Rao
  • Patent number: 11967370
    Abstract: A controller for managing at least one MLC non-volatile memory space including at least one MLC non-volatile memory element and at least one SLC non-volatile memory space including at least one SLC non-volatile memory element. The controller is adapted to determine if a range of addresses listed by an entry and mapped to the at least one MLC non-volatile memory element fails a data integrity test performed at the controller based upon received data retained at the controller and which received data is stored in the at least one MLC memory element as stored data. In the event of such a failure, the controller remaps said entry to an the at least one SLC non-volatile memory element.
    Type: Grant
    Filed: December 20, 2023
    Date of Patent: April 23, 2024
    Assignee: Vervain, LLC
    Inventor: G. R. Mohan Rao
  • Publication number: 20240120000
    Abstract: A controller for managing at least one MLC non-volatile memory space including at least one MLC non-volatile memory element and at least one SLC non-volatile memory space including at least one SLC non-volatile memory element. The controller is adapted to determine if a range of addresses listed by an entry and mapped to the at least one MLC non-volatile memory element fails a data integrity test performed at the controller based upon received data retained at the controller and which received data is stored in the at least one MLC memory element as stored data. In the event of such a failure, the controller remaps said entry to an the at least one SLC non-volatile memory element.
    Type: Application
    Filed: December 20, 2023
    Publication date: April 11, 2024
    Inventor: G.R. Mohan Rao
  • Publication number: 20240071485
    Abstract: A flash controller for managing at least one MLC non-volatile memory module and at least one SLC non-volatile memory module. The flash controller is adapted to determine if a range of addresses listed by an entry and mapped to said at least one MLC non-volatile memory module fails a data integrity test. In the event of such a failure, the controller remaps said entry to an equivalent range of addresses of said at least one SLC non-volatile memory module. The flash controller is further adapted to determine which of the blocks in the MLC and SLC non-volatile memory modules are accessed most frequently and allocating those blocks that receive frequent writes to the SLC non-volatile memory module and those blocks that receive infrequent writes to the MLC non-volatile memory module.
    Type: Application
    Filed: November 7, 2023
    Publication date: February 29, 2024
    Inventor: G.R. Mohan Rao
  • Publication number: 20240013832
    Abstract: A method for storing data comprises maintaining an address table for a memory space containing volatile memory and nonvolatile memory space. The nonvolatile memory space includes both multi-level cell (MLC) space and single level cell (SLC) space and the volatile memory includes a random access volatile memory element. An address table maps logical and physical addresses adaptable to the system by the address table. The mapping is performed as necessitated by the system to maximize lifetime maps data in at least one of volatile or nonvolatile memories. Storing received data within a controller memory associated with the at least one controller. Controlling access of the MLC and SLC nonvolatile memory elements and the random access volatile memory element for storage of the received data.
    Type: Application
    Filed: September 26, 2023
    Publication date: January 11, 2024
    Applicant: Vervain, LLC
    Inventor: G.R. Mohan Rao
  • Patent number: 11854612
    Abstract: A method for storing data comprises maintaining an address table for a memory space containing volatile memory and nonvolatile memory space. The nonvolatile memory space includes both multi-level cell (MLC) space and single level cell (SLC) space and the volatile memory includes a random access volatile memory element. An address table maps logical and physical addresses adaptable to the system by the address table. The mapping is performed as necessitated by the system to maximize lifetime maps data in at least one of volatile or nonvolatile memories. Storing received data within a controller memory associated with the at least one controller. Controlling access of the MLC and SLC nonvolatile memory elements and the random access volatile memory element for storage of the received data.
    Type: Grant
    Filed: September 26, 2023
    Date of Patent: December 26, 2023
    Assignee: Vervain, LLC
    Inventor: G. R. Mohan Rao
  • Patent number: 11830546
    Abstract: A flash controller for managing at least one MLC non-volatile memory module and at least one SLC non-volatile memory module. The flash controller is adapted to determine if a range of addresses listed by an entry and mapped to said at least one MLC non-volatile memory module fails a data integrity test. In the event of such a failure, the controller remaps said entry to an equivalent range of addresses of said at least one SLC non-volatile memory module. The flash controller is further adapted to determine which of the blocks in the MLC and SLC non-volatile memory modules are accessed most frequently and allocating those blocks that receive frequent writes to the SLC non-volatile memory module and those blocks that receive infrequent writes to the MLC non-volatile memory module.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: November 28, 2023
    Assignee: VERVAIN, LLC
    Inventor: G. R. Mohan Rao
  • Publication number: 20230153247
    Abstract: Exemplary apparatus includes a nonvolatile memory, a volatile memory separate from the nonvolatile memory, and a controller configured to access the volatile memory and the nonvolatile memory. Exemplary volatile memory is configured to function as a read/write cache. The controller may be configured to perform a read/modify/write memory operation that involves both the volatile memory and the nonvolatile memory. Exemplary devices may have a host interface and may include a data connection configured to perform double data rate data transfer. Exemplary volatile memory may support byte-granularity memory read operations, and the density of the volatile memory may be substantially less than the density of the nonvolatile memory.
    Type: Application
    Filed: January 12, 2023
    Publication date: May 18, 2023
    Inventor: G. R. Mohan Rao
  • Publication number: 20220246725
    Abstract: Most semiconductor devices manufactured today, have uniform dopant concentration, either in the lateral or vertical device active (and isolation) regions. By grading the dopant concentration, the performance in various semiconductor devices can be significantly improved. Performance improvements can be obtained in application specific areas like increase in frequency of operation for digital logic, various power MOSFET and IGBT ICs, improvement in refresh time for DRAMs, decrease in programming time for nonvolatile memory, better visual quality including pixel resolution and color sensitivity for imaging ICs, better sensitivity for varactors in tunable filters, higher drive capabilities for JFETs, and a host of other applications.
    Type: Application
    Filed: April 25, 2022
    Publication date: August 4, 2022
    Inventor: G.R. MOHAN RAO
  • Patent number: 11316014
    Abstract: Most semiconductor devices manufactured today, have uniform dopant concentration, either in the lateral or vertical device active (and isolation) regions. By grading the dopant concentration, the performance in various semiconductor devices can be significantly improved. Performance improvements can be obtained in application specific areas like increase in frequency of operation for digital logic, various power MOSFET and IGBT ICs, improvement in refresh time for DRAMs, decrease in programming time for nonvolatile memory, better visual quality including pixel resolution and color sensitivity for imaging ICs, better sensitivity for varactors in tunable filters, higher drive capabilities for iFETs, and a host of other applications.
    Type: Grant
    Filed: July 9, 2021
    Date of Patent: April 26, 2022
    Assignee: GREENTHREAD, LLC
    Inventor: G. R. Mohan Rao
  • Publication number: 20210359086
    Abstract: Most semiconductor devices manufactured today, have uniform dopant concentration, either in the lateral or vertical device active (and isolation) regions. By grading the dopant concentration, the performance in various semiconductor devices can be significantly improved. Performance improvements can be obtained in application specific areas like increase in frequency of operation for digital logic, various power MOSFET and IGBT ICs, improvement in refresh time for DRAMs, decrease in programming time for nonvolatile memory, better visual quality including pixel resolution and color sensitivity for imaging ICs, better sensitivity for varactors in tunable filters, higher drive capabilities for iFETs, and a host of other applications.
    Type: Application
    Filed: July 9, 2021
    Publication date: November 18, 2021
    Inventor: G.R. MOHAN RAO
  • Patent number: 11121222
    Abstract: Most semiconductor devices manufactured today, have uniform dopant concentration, either in the lateral or vertical device active (and isolation) regions. By grading the dopant concentration, the performance in various semiconductor devices can be significantly improved. Performance improvements can be obtained in application specific areas like increase in frequency of operation for digital logic, various power MOSFET and IGBT ICs, improvement in refresh time for DRAMs, decrease in programming time for nonvolatile memory, better visual quality including pixel resolution and color sensitivity for imaging ICs, better sensitivity for varactors in tunable filters, higher drive capabilities for JFETs, and a host of other applications.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: September 14, 2021
    Assignee: GREENTHREAD, LLC
    Inventor: G.R. Mohan Rao
  • Publication number: 20210210136
    Abstract: A flash controller for managing at least one MLC non-volatile memory module and at least one SLC non-volatile memory module. The flash controller is adapted to determine if a range of addresses listed by an entry and mapped to said at least one MLC non-volatile memory module fails a data integrity test. In the event of such a failure, the controller remaps said entry to an equivalent range of addresses of said at least one SLC non-volatile memory module. The flash controller is further adapted to determine which of the blocks in the MLC and SLC non-volatile memory modules are accessed most frequently and allocating those blocks that receive frequent writes to the SLC non-volatile memory module and those blocks that receive infrequent writes to the MLC non-volatile memory module.
    Type: Application
    Filed: March 16, 2021
    Publication date: July 8, 2021
    Inventor: G.R. Mohan Rao
  • Patent number: 10950300
    Abstract: A flash controller for managing at least one MLC non-volatile memory module and at least one SLC non-volatile memory module. The flash controller is adapted to determine if a range of addresses listed by an entry and mapped to said at least one MLC non-volatile memory module fails a data integrity test. In the event of such a failure, the controller remaps said entry to an equivalent range of addresses of said at least one SLC non-volatile memory module. The flash controller is further adapted to determine which of the blocks in the MLC and SLC non-volatile memory modules are accessed most frequently and allocating those blocks that receive frequent writes to the SLC non-volatile memory module and those blocks that receive infrequent writes to the MLC non-volatile memory module.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: March 16, 2021
    Assignee: Vervain, LLC
    Inventor: G. R. Mohan Rao
  • Publication number: 20210005716
    Abstract: Most semiconductor devices manufactured today, have uniform dopant concentration, either in the lateral or vertical device active (and isolation) regions. By grading the dopant concentration, the performance in various semiconductor devices can be significantly improved. Performance improvements can be obtained in application specific areas like increase in frequency of operation for digital logic, various power MOSFET and IGBT ICs, improvement in refresh time for DRAMs, decrease in programming time for nonvolatile memory, better visual quality including pixel resolution and color sensitivity for imaging ICs, better sensitivity for varactors in tunable filters, higher drive capabilities for JFETs, and a host of other applications.
    Type: Application
    Filed: July 27, 2020
    Publication date: January 7, 2021
    Inventor: G.R. Mohan Rao
  • Patent number: 10734481
    Abstract: Most semiconductor devices manufactured today, have uniform dopant concentration, either in the lateral or vertical device active (and isolation) regions. By grading the dopant concentration, the performance in various semiconductor devices can be significantly improved. Performance improvements can be obtained in application specific areas like increase in frequency of operation for digital logic, various power MOSFET and IGBT ICs, improvement in refresh time for DRAMs, decrease in programming time for nonvolatile memory, better visual quality including pixel resolution and color sensitivity for imaging ICs, better sensitivity for varactors in tunable filters, higher drive capabilities for JFETs, and a host of other applications.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: August 4, 2020
    Assignee: Greenthread, LLC
    Inventor: G. R. Mohan Rao
  • Publication number: 20200127095
    Abstract: Most semiconductor devices manufactured today, have uniform dopant concentration, either in the lateral or vertical device active (and isolation) regions. By grading the dopant concentration, the performance in various semiconductor devices can be significantly improved. Performance improvements can be obtained in application specific areas like increase in frequency of operation for digital logic, various power MOSFET and IGBT ICs, improvement in refresh time for DRAMs, decrease in programming time for nonvolatile memory, better visual quality including pixel resolution and color sensitivity for imaging ICs, better sensitivity for varactors in tunable filters, higher drive capabilities for JFETs, and a host of other applications.
    Type: Application
    Filed: December 17, 2019
    Publication date: April 23, 2020
    Inventor: G.R. Mohan Rao
  • Patent number: 10510842
    Abstract: Most semiconductor devices manufactured today, have uniform dopant concentration, either in the lateral or vertical device active (and isolation) regions. By grading the dopant concentration, the performance in various semiconductor devices can be significantly improved. Performance improvements can be obtained in application specific areas like increase in frequency of operation for digital logic, various power MOFSFET and IGBT ICs, improvement in refresh time for DRAMs, decrease in programming time for nonvolatile memory, better visual quality including pixel resolution and color sensitivity for imaging ICs, better sensitivity for varactors in tunable filters, higher drive capabilities for JFETs, and a host of other applications.
    Type: Grant
    Filed: May 9, 2017
    Date of Patent: December 17, 2019
    Assignee: GREENTHREAD, LLC
    Inventor: G.R. Mohan Rao
  • Publication number: 20180294029
    Abstract: A flash controller for managing at least one MLC non-volatile memory module and at least one SLC non-volatile memory module. The flash controller is adapted to determine if a range of addresses listed by an entry and mapped to said at least one MLC non-volatile memory module fails a data integrity test. In the event of such a failure, the controller remaps said entry to an equivalent range of addresses of said at least one SLC non-volatile memory module. The flash controller is further adapted to determine which of the blocks in the MLC and SLC non-volatile memory modules are accessed most frequently and allocating those blocks that receive frequent writes to the SLC non-volatile memory module and those blocks that receive infrequent writes to the MLC non-volatile memory module.
    Type: Application
    Filed: June 12, 2018
    Publication date: October 11, 2018
    Inventor: G.R. MOHAN RAO
  • Patent number: 9997240
    Abstract: A controller for managing at least one MLC non-volatile memory module and at least one SLC non-volatile memory module. The flash controller is adapted to determine if a range of addresses listed by an entry and mapped to said at least one MLC non-volatile memory module fails a data integrity test. In the event of such a failure, the controller remaps said entry to an equivalent range of addresses of said at least one SLC non-volatile memory module. The flash controller is further adapted to determine which of the blocks in the MLC and SLC non-volatile memory modules are accessed most frequently and allocating those blocks that receive frequent writes to the SLC non-volatile memory module and those blocks that receive infrequent writes to the MLC non-volatile memory module.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: June 12, 2018
    Assignee: Greenthread, LLC
    Inventor: G. R. Mohan Rao