Patents by Inventor Gregory E. Howard

Gregory E. Howard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7501324
    Abstract: The present invention is a method for forming super steep doping profiles in MOS transistor structures. The method comprises forming a carbon containing layer (110) beneath the gate dielectric (50) and source and drain regions (80) of a MOS transistor. The carbon containing layer (110) will prevent the diffusion of dopants into the region (40) directly beneath the gate dielectric layer (50).
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: March 10, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Jeffrey A. Babcock, Angelo Pinto, Scott Balster, Alfred Haeusler, Gregory E. Howard
  • Publication number: 20090061566
    Abstract: Semiconductor chip (1101) of a ball grid array device (1100) is mounted onto tape substrate (1102) using attach adhesive (1103). The metal layer on the top surface of substrate (1102) uses between about 30% to 90% of its area for connecting lines (1104), and only the remainder for members/rings (1105) and terminals (1106). Routing of differential pair signals and large numbers of signals on a single layer tape package are feasible. This embodiment creates an inexpensive high performance tape ball grid array package for chip-scale devices. Terminals (1106) serve the connection (by bonding wires or reflow bumps) to the chip contact pads. Inserted in members/rings (1105) are the conductive pins (1107), which serve as anchors for the solder bodies/balls (1108). Pins (1107) are substantially insensitive to the thermomechanical stresses, which occur in device (1100) during assembly, testing and operation.
    Type: Application
    Filed: November 3, 2008
    Publication date: March 5, 2009
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: GREGORY E. HOWARD, NAVIN KALIDAS, PAUL J. HUNDT, GARY P. MORRISON
  • Patent number: 7498654
    Abstract: A transistor apparatus includes a silicon substrate and a barrier structure extending substantially from generally adjacent the silicon substrate to a locus displaced from the silicon substrate. The barrier structure generally surrounds a volume containing connection loci for the transistor apparatus and a buried layer in a silicon medium. The connection loci and the buried layer occupy a space generally presenting a first lateral expanse generally parallel with the silicon substrate. The volume presents a second lateral expanse generally parallel with the silicon substrate. The second lateral expanse is greater than the first lateral expanse within a predetermined distance of the substrate.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: March 3, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Leland Scott Swanson, Gregory E. Howard
  • Publication number: 20090001517
    Abstract: One embodiment relates to a circuit. In this circuit, a first semiconductor device with a first geometry is associated with a first region of a semiconductor body within a first isolation structure. A second semiconductor device with a geometry that matches the first geometry is associated with a second region of the semiconductor body within a second isolation structure. A member, which spans the semiconductor body between the first region and the second region, thermally couples the first region to the second region while retaining electrical isolation therebetween. Other circuits and methods are also disclosed.
    Type: Application
    Filed: June 27, 2007
    Publication date: January 1, 2009
    Inventors: Leland Scott Swanson, Gregory E. Howard
  • Patent number: 7462783
    Abstract: Semiconductor chip (1101) of a ball grid array device (1100) is mounted onto tape substrate (1102) using attach adhesive (1103). The metal layer on the top surface of substrate (1102) uses between about 30% to 90% of its area for connecting lines (1104), and only the remainder for members/rings (1105) and terminals (1106). Routing of differential pair signals and large numbers of signals on a single layer tape package are feasible. This embodiment creates an inexpensive high performance tape ball grid array package for chip-scale devices. Terminals (1106) serve the connection (by bonding wires or reflow bumps) to the chip contact pads. Inserted in members/rings (1105) are the conductive pins (1107), which serve as anchors for the solder bodies/balls (1108). Pins (1107) are substantially insensitive to the thermomechanical stresses, which occur in device (1100) during assembly, testing and operation.
    Type: Grant
    Filed: August 2, 2004
    Date of Patent: December 9, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Gregory E. Howard, Navin Kalidas, Paul J. Hundt, Gary P. Morrison
  • Patent number: 7459357
    Abstract: The present invention provides a system for providing a cross-lateral junction field effect transistor (114) having desired high-performance desired voltage, frequency or current characteristics. The cross-lateral transistor is formed on a commercial semiconductor substrate (102). A channel structure (124) is formed along the substrate, having source (120) and drain (122) structures laterally formed on opposites sides thereof. A first gate structure (116) is formed along the substrate, laterally adjoining the channel structure orthogonal to the source and drain structures. A second gate structure (118) is formed along the substrate, laterally adjoining the channel structure, orthogonal to the source and drain structures and opposite the first gate stricture.
    Type: Grant
    Filed: August 16, 2007
    Date of Patent: December 2, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Gregory E Howard, Leland Swanson
  • Patent number: 7422972
    Abstract: An integrated circuit programmable structure (60) is formed for use a trim resistor and/or a programmable fuse. The programmable structure comprises placing heating elements (70) in close proximity to the programmable structure (60) to heat the programmable structure (60) during programming.
    Type: Grant
    Filed: July 15, 2005
    Date of Patent: September 9, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Jeffrey A. Babcock, Angelo Pinto, Gregory E. Howard, Philipp Steinmann, Scott Balster
  • Publication number: 20080132012
    Abstract: The present invention is a method for forming super steep doping profiles in MOS transistor structures. The method comprises forming a carbon containing layer (110) beneath the gate dielectric (50) and source and drain regions (80) of a MOS transistor. The carbon containing layer (110) will prevent the diffusion of dopants into the region (40) directly beneath the gate dielectric layer (50).
    Type: Application
    Filed: October 30, 2007
    Publication date: June 5, 2008
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Jeffrey A. Babcock, Angelo Pinto, Scott Balster, Alfred Haeusler, Gregory E. Howard
  • Patent number: 7338837
    Abstract: An integrated circuit device package with a first part (101) having a cavity (104) to mount the chip (105), further I/O terminals (102) on the top surface and terminals (103) on the bottom surface. The chip has contact pads (107a and 107b). The second part (110) of the package has bottom surface terminals (111) aligned with the chip contact pads, and bottom terminals (112) aligned with the terminals (102) of the first package part. The connections are provided by stud bumps between the chip contact pads and terminals (111), and by reflow material between terminals (102) and (112). The connector lines (109a and 109b) in the second package part (110) comprise signal/power and ground layers. The layers are spaced by insulation between 10 and 50 ?m thick, and the connector lines have a width less than three times the insulator thickness.
    Type: Grant
    Filed: February 7, 2005
    Date of Patent: March 4, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Gregory E. Howard, Mukul Saran
  • Publication number: 20080023805
    Abstract: One embodiment of the invention is a semiconductor system (1400) of arrays (1401, 1402, etc.) of packaged devices. Each array includes a sheet-like substrate (1411, 1412, etc.) made of insulating material integral with conductive horizontal lines and vertical vias, and terminals on the surfaces. Semiconductor components, which may include more than one active or passive chips, or chips of different sizes, are attached to the substrate; the electrical connections may include flip-chip, wire bond, or combination techniques. Encapsulation compound (1412, 1422, etc.), which adheres to the substrate, embeds the connected components. Metal posts (1431, 1432, etc.) traverse the encapsulation compound vertically, connecting the substrate vias with pads on the encapsulation surface. The pads are covered with solder bodies used to connect to the next-level device array so that a 3-dimensional system of packaged devices is formed.
    Type: Application
    Filed: July 26, 2006
    Publication date: January 31, 2008
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Gregory E. Howard, Vikas Gupta, Darvin R. Edwards
  • Patent number: 7288800
    Abstract: The present invention provides a system for providing a cross-lateral junction field effect transistor (114) having desired high-performance desired voltage, frequency or current characteristics. The cross-lateral transistor is formed on a commercial semiconductor substrate (102). A channel structure (124) is formed along the substrate, having source (120) and drain (122) structures laterally formed on opposites sides thereof. A first gate structure (116) is formed along the substrate, laterally adjoining the channel structure orthogonal to the source and drain structures. A second gate structure (118) is formed along the substrate, laterally adjoining the channel structure, orthogonal to the source and drain structures and opposite the first gate structure.
    Type: Grant
    Filed: January 7, 2005
    Date of Patent: October 30, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Gregory E. Howard, Leland Swanson
  • Patent number: 7281223
    Abstract: The teachings of the present invention provide a method for modeling an integrated circuit system including a microchip, an integrated circuit package, and a printed circuit board. The method includes generating a configuration file including parasitics regarding ball grid arrays and vias intended for use in design of the integrated circuit system. A netlist may be generated using the configuration file. In accordance with a particular embodiment of the present invention, the operation of the integrated circuit system may be simulated to determine anticipated operating characteristics of the integrated circuit system.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: October 9, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Stephen N. Kiel, Snehamay Sinha, Gregory E. Howard
  • Patent number: 7199430
    Abstract: The present invention is a method for forming super steep doping profiles in MOS transistor structures. The method comprises forming a carbon containing layer (110) beneath the gate dielectric (50) and source and drain regions (80) of a MOS transistor. The carbon containing layer (110) will prevent the diffusion of dopants into the region (40) directly beneath the gate dielectric layer (50).
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: April 3, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Jeffrey A. Babcock, Angelo Pinto, Scott Balster, Alfred Haeusler, Gregory E. Howard
  • Patent number: 7180159
    Abstract: A bipolar transistor in a monocrystalline semiconductor substrate (101), which has a first conductivity type and includes a surface layer (102) of the opposite conductivity type. The transistor comprises an emitter contact (110) on the surface layer; a base contact (130 and 131) extending through a substantial portion (141) of the surface layer, spaced apart (140a) from the emitter; an insulator region (150/151) buried under the base contact; a collector contact (120); and a first polycrystalline semiconductor region (152/153) selectively located under the insulator region, and a second polycrystalline semiconductor region (154) selectively located under the collector contact. These polycrystalline regions exhibit heavy dopant concentrations of the first conductivity type; consequently, they lower the collector resistance.
    Type: Grant
    Filed: July 13, 2004
    Date of Patent: February 20, 2007
    Assignee: Texas Instruments Incorporated
    Inventor: Gregory E. Howard
  • Patent number: 7154047
    Abstract: A substrate (300) for a package of high frequency semiconductor devices comprising a planar insulating substrate having a plurality of parallel, planar metal layers (301a, 301b, etc.) embedded in the insulator. The substrate further has at least one pair of parallel, metal-filled vias (302 and 303) traversing the substrate; the vias have a diameter and a distance from each other of at least this diameter. The metal in each via has a sheet-like extension (321a, 321b, etc.) in each of selected planes of said metal layers, resulting in an increased via-to-via capacitance so that the reflection of a high frequency signal is less than 10%.
    Type: Grant
    Filed: February 27, 2004
    Date of Patent: December 26, 2006
    Assignee: Texas Instruments Incorporated
    Inventor: Gregory E. Howard
  • Patent number: 7087479
    Abstract: Contacts are formed to integrated circuit devices by first forming a conductive layer (80) on a semiconductor device. An optional dielectric layer (130) is formed over the conductive layer and a carbon containing dielectric layer (140) is formed over the optional dielectric layer (130). Contacts are formed to the conductive layer (80) by etching openings in the carbon containing dielectric layer (140) and the optional dielectric layer (130).
    Type: Grant
    Filed: October 8, 2004
    Date of Patent: August 8, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Leland S. Swanson, Gregory E. Howard
  • Patent number: 7064399
    Abstract: The present invention is a method for forming super steep doping profiles in MOS transistor structures. The method comprises forming a carbon containing layer (110) beneath the gate dielectric (50) and source and drain regions (80) of a MOS transistor. The carbon containing layer (110) will prevent the diffusion of dopants into the region (40) directly beneath the gate dielectric layer (50).
    Type: Grant
    Filed: September 7, 2001
    Date of Patent: June 20, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Jeffrey A. Babcock, Angelo Pinto, Scott Balster, Alfred Haeusler, Gregory E. Howard
  • Patent number: 7034379
    Abstract: Bipolar transistors and methods for fabricating bipolar transistors are disclosed wherein an emitter-base dielectric stack is formed between emitter and base structures, comprising a carbide layer situated between first and second oxide layers. The carbide layer provides an etch stop for etching the overlying oxide layer, and the underlying oxide layer provides an etch stop for etching the carbide layer to form an emitter-base contact opening.
    Type: Grant
    Filed: September 8, 2003
    Date of Patent: April 25, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Leland S. Swanson, Gregory E. Howard
  • Patent number: 6958523
    Abstract: An integrated circuit programmable structure (60) is formed for use a trim resistor and/or a programmable fuse. The programmable structure comprises placing heating elements (70) in close proximity to the programmable structure (60) to heat the programmable structure (60) during programming.
    Type: Grant
    Filed: September 7, 2001
    Date of Patent: October 25, 2005
    Assignee: Texas Instruments Incorporated
    Inventors: Jeffrey A. Babcock, Angelo Pinto, Gregory E. Howard, Philipp Steinmann, Scott Balster
  • Patent number: 6927428
    Abstract: A heterojunction bipolar transistor (30) in a silicon-on-insulator (SOI) structure is disclosed. The transistor collector (28), heterojunction base region (20), and intrinsic emitter region (25) are formed in the thin film silicon layer (6) overlying the buried insulator layer (4). A base electrode (10) is formed of polysilicon, and has a polysilicon filament (10f) that extends over the edge of an insulator layer (8) to contact the silicon layer (6). After formation of insulator filaments (12) along the edges of the base electrode (10) and insulator layer (8), the thin film silicon layer (6) is etched through, exposing an edge. An angled ion implantation then implants the heterojunction species, for example germanium and carbon, into the exposed edge of the thin film silicon layer (6), which after anneal forms the heterojunction base region (20).
    Type: Grant
    Filed: April 6, 2004
    Date of Patent: August 9, 2005
    Assignee: Texas Instruments Incorporated
    Inventors: Jeffrey A. Babcock, Angelo Pinto, Gregory E. Howard