Patents by Inventor Harald Huels

Harald Huels has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11316713
    Abstract: A computer-implemented method comprises receiving an index number for each of a plurality of physical processing units, each of the plurality of physical processing units communicatively coupled to each of a plurality of switch chips in a leaf-spine topology; assigning at least one of the plurality of physical processing units to a first virtual drawer by updating an entry in a virtual drawer table indicating an association between the respective index number of the at least one physical processing unit and an index of the first virtual drawer; and performing a drawer management function based on the virtual drawer table.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: April 26, 2022
    Assignee: International Business Machines Corporation
    Inventors: Burkhard Steinmacher-Burow, Harald Huels
  • Publication number: 20210160100
    Abstract: A computer-implemented method comprises receiving an index number for each of a plurality of physical processing units, each of the plurality of physical processing units communicatively coupled to each of a plurality of switch chips in a leaf-spine topology; assigning at least one of the plurality of physical processing units to a first virtual drawer by updating an entry in a virtual drawer table indicating an association between the respective index number of the at least one physical processing unit and an index of the first virtual drawer; and performing a drawer management function based on the virtual drawer table.
    Type: Application
    Filed: November 25, 2019
    Publication date: May 27, 2021
    Inventors: Burkhard Steinmacher-Burow, Harald Huels
  • Patent number: 10959339
    Abstract: A system for manufacturing a product includes a mating connector connected to solder pins to provide an electrical conducting path, the solder pins being aligned against solder pads so that each solder pin is thermally and electrically connected to its corresponding solder pad by a solder paste bead. The system also includes a controller to adjust electrical resistive heating of a solder paste bead during a soldering process according to a temperature of the solder paste bead. A method of manufacturing a product includes aligning the solder pins against the solder pads, connecting the mating connector to the solder pins, and heating a solder paste bead by an electrical resistive heating, the solder paste bead undergoing a soldering process, where a temperature of the solder paste bead is being evaluated and the electrical resistive heating is adjusted according to the temperature of the solder paste bead.
    Type: Grant
    Filed: January 15, 2018
    Date of Patent: March 23, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bruce J. Chamberlin, Andreas Huber, Harald Huels, Thomas-Michael Winkel
  • Patent number: 10734317
    Abstract: The invention relates to a method for embedding a discrete electronic device in a chip module. The chip module comprises a multilayer substrate which comprises a plurality of electrically conductive layers stacked above each other and an electrically non-conductive layer arranged between each pair of electrically conductive layers. The chip module is configured to receive one or more chips to be mounted onto a top surface thereof. Each electrically conductive layer comprises one or more electrically conductive structures. A recess is provided in a side surface of the chip module. The discrete electronic device is inserted into the recess. A first electrically conductive connection between a first electrical contact of the discrete electronic device and a first electrically conductive structure is established. Further, a second electrically conductive connection between a second electrical contact of the discrete electronic device and a second electrically conductive structure is established.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: August 4, 2020
    Assignee: International Business Machines Corporation
    Inventors: Andreas Huber, Harald Huels, Stefano S. Oggioni, Thomas Strach, Thomas-Michael Winkel
  • Patent number: 10546809
    Abstract: A method is provided to supply power to wafer-scale ICs. The method includes receiving a wafer containing ICs placed on the top of the wafer. The wafer has through-silicon vias to provide power from the bottom to the ICs. The method also includes a printed circuit board, which has power rails in a pattern on the top of the printed circuit board, where the rails provide voltage and ground. The method continues with placing metal solder spheres between the bottom of the wafer and the top of the printed circuit board, where the spheres provide connections between the two, and where the spheres are free to move and operate as mechanical springs to resist clamping forces. The method also includes applying clamping pressure to the structure to establish connections by compressing the spheres, where no soldering is required.
    Type: Grant
    Filed: October 3, 2018
    Date of Patent: January 28, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Charles E. Cox, Harald Huels, Arvind Kumar, Xiao Hu Liu, Ahmet S. Ozcan, Winfried W. Wilcke
  • Publication number: 20190295938
    Abstract: The invention relates to a method for embedding a discrete electronic device in a chip module. The chip module comprises a multilayer substrate which comprises a plurality of electrically conductive layers stacked above each other and an electrically non-conductive layer arranged between each pair of electrically conductive layers. The chip module is configured to receive one or more chips to be mounted onto a top surface thereof. Each electrically conductive layer comprises one or more electrically conductive structures. A recess is provided in a side surface of the chip module. The discrete electronic device is inserted into the recess. A first electrically conductive connection between a first electrical contact of the discrete electronic device and a first electrically conductive structure is established. Further, a second electrically conductive connection between a second electrical contact of the discrete electronic device and a second electrically conductive structure is established.
    Type: Application
    Filed: June 12, 2019
    Publication date: September 26, 2019
    Inventors: Andreas Huber, Harald Huels, Stefano S. Oggioni, Thomas Strach, Thomas-Michael Winkel
  • Patent number: 10423877
    Abstract: Three-dimensional (3D) neuromorphic computing systems are provided. A system includes a logic wafer having a plurality of processors. The system further includes a double-sided interposer bonded to the logic wafer and incorporating a signal port ring for sending and receiving signals. The system also includes a plurality of 3D memory modules bonded to the double-sided interposer. The double-sided interposer is a wafer scale or a panel scale providing communication between the plurality of processors and the plurality of 3D memory modules.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: September 24, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Charles E. Cox, Harald Huels, Arvind Kumar, Pritish Narayanan, Ahmet S. Ozcan, J. Campbell Scott, Winfried W. Wilcke
  • Patent number: 10354946
    Abstract: The invention relates to a method for embedding a discrete electronic device in a chip module. The chip module comprises a multilayer substrate which comprises a plurality of electrically conductive layers stacked above each other and an electrically non-conductive layer arranged between each pair of electrically conductive layers. The chip module is configured to receive one or more chips to be mounted onto a top surface thereof. Each electrically conductive layer comprises one or more electrically conductive structures. A recess is provided in a side surface of the chip module. The discrete electronic device is inserted into the recess. A first electrically conductive connection between a first electrical contact of the discrete electronic device and a first electrically conductive structure is established. Further, a second electrically conductive connection between a second electrical contact of the discrete electronic device and a second electrically conductive structure is established.
    Type: Grant
    Filed: April 5, 2018
    Date of Patent: July 16, 2019
    Assignee: International Business Machines Corporation
    Inventors: Andreas Huber, Harald Huels, Stefano S. Oggioni, Thomas Strach, Thomas-Michael Winkel
  • Patent number: 10209890
    Abstract: A computing system includes a host processor, an access processor having a command port, a near memory accelerator, and a memory unit. The system is adapted to run a software program on the host processor and to offload an acceleration task of the software program to the near memory accelerator. The system is further adapted to provide, via the command port, a first communication path for direct communication between the software program and the near memory accelerator, and to provide, via the command port and the access processor, a second communication path for indirect communication between the software program and the near memory accelerator. A related computer implemented method and a related computer program product are also disclosed.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: February 19, 2019
    Assignee: International Business Machines Corporation
    Inventors: Angelo Haller, Harald Huels, Jan Van Lunteren, Joerg-Stephan Vogt
  • Patent number: 10203878
    Abstract: A computing system includes a host processor, an access processor having a command port, a near memory accelerator, and a memory unit. The system is adapted to run a software program on the host processor and to offload an acceleration task of the software program to the near memory accelerator. The system is further adapted to provide, via the command port, a first communication path for direct communication between the software program and the near memory accelerator, and to provide, via the command port and the access processor, a second communication path for indirect communication between the software program and the near memory accelerator. A related computer implemented method and a related computer program product are also disclosed.
    Type: Grant
    Filed: December 30, 2017
    Date of Patent: February 12, 2019
    Assignee: International Business Machines Corporation
    Inventors: Angelo Haller, Harald Huels, Jan Van Lunteren, Joerg-Stephan Vogt
  • Publication number: 20190035722
    Abstract: A method is provided to supply power to wafer-scale ICs. The method includes receiving a wafer containing ICs placed on the top of the wafer. The wafer has through-silicon vias to provide power from the bottom to the ICs. The method also includes a printed circuit board, which has power rails in a pattern on the top of the printed circuit board, where the rails provide voltage and ground. The method continues with placing metal solder spheres between the bottom of the wafer and the top of the printed circuit board, where the spheres provide connections between the two, and where the spheres are free to move and operate as mechanical springs to resist clamping forces. The method also includes applying clamping pressure to the structure to establish connections by compressing the spheres, where no soldering is required.
    Type: Application
    Filed: October 3, 2018
    Publication date: January 31, 2019
    Inventors: Charles E. Cox, Harald Huels, Arvind Kumar, Xiao Hu Liu, Ahmet S. Ozcan, Winfried W. Wilcke
  • Patent number: 10147676
    Abstract: A method is provided to supply power to wafer-scale ICs. The method includes receiving a wafer containing ICs placed on the top of the wafer. The wafer has through-hole vias to provide power from the bottom to the ICs. The method also includes a printed circuit board, which has power rails in a pattern on the top of the printed circuit board, where the rails provide voltage and ground. The method continues with placing metal solder spheres between the bottom of the wafer and the top of the printed circuit board, where the spheres provide connections between the two, and where the spheres are free to move and operate as mechanical springs to resist clamping forces. The method also includes applying clamping pressure to the structure to establish connections by compressing the spheres, where no soldering is required.
    Type: Grant
    Filed: May 15, 2017
    Date of Patent: December 4, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Charles E. Cox, Harald Huels, Arvind Kumar, Xiao Hu Liu, Ahmet S. Ozcan, Winfried W. Wilcke
  • Patent number: 10149388
    Abstract: A method for embedding a discrete electrical device in a printed circuit board (PCB) is provided, which includes: providing a vertical via as a blind hole from a horizontal surface of the PCB to a conductive structure in a first layer, the first layer being one layer of a first core section of a plurality of core sections vertically arranged above each other, each core section including lower and upper conductive layers, and a non-conductive layer in between; inserting the electrical device into the via, with the device extending within at least two of the core sections; establishing a first electrical connection between a first device contact and the conductive structure in the first layer; and establishing a second electrical connection between a second device contact and a second layer, the second layer being one of the conductive layers of a second horizontal core section.
    Type: Grant
    Filed: June 7, 2016
    Date of Patent: December 4, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES, CORPORATION
    Inventors: Bruce J. Chamberlin, Andreas Huber, Harald Huels, Thomas Strach, Thomas-Michael Winkel
  • Publication number: 20180331028
    Abstract: A method is provided to supply power to wafer-scale ICs. The method includes receiving a wafer containing ICs placed on the top of the wafer. The wafer has through-hole vias to provide power from the bottom to the ICs. The method also includes a printed circuit board, which has power rails in a pattern on the top of the printed circuit board, where the rails provide voltage and ground. The method continues with placing metal solder spheres between the bottom of the wafer and the top of the printed circuit board, where the spheres provide connections between the two, and where the spheres are free to move and operate as mechanical springs to resist clamping forces. The method also includes applying clamping pressure to the structure to establish connections by compressing the spheres, where no soldering is required.
    Type: Application
    Filed: May 15, 2017
    Publication date: November 15, 2018
    Inventors: Charles E. Cox, Harald Huels, Arvind Kumar, Xiao Hu Liu, Ahmet S. Ozcan, Winfried W. Wilcke
  • Publication number: 20180284992
    Abstract: A computing system includes a host processor, an access processor having a command port, a near memory accelerator, and a memory unit. The system is adapted to run a software program on the host processor and to offload an acceleration task of the software program to the near memory accelerator. The system is further adapted to provide, via the command port, a first communication path for direct communication between the software program and the near memory accelerator, and to provide, via the command port and the access processor, a second communication path for indirect communication between the software program and the near memory accelerator. A related computer implemented method and a related computer program product are also disclosed.
    Type: Application
    Filed: March 28, 2017
    Publication date: October 4, 2018
    Inventors: Angelo Haller, Harald Huels, Jan Van Lunteren, Joerg-Stephan Vogt
  • Publication number: 20180284994
    Abstract: A computing system includes a host processor, an access processor having a command port, a near memory accelerator, and a memory unit. The system is adapted to run a software program on the host processor and to offload an acceleration task of the software program to the near memory accelerator. The system is further adapted to provide, via the command port, a first communication path for direct communication between the software program and the near memory accelerator, and to provide, via the command port and the access processor, a second communication path for indirect communication between the software program and the near memory accelerator. A related computer implemented method and a related computer program product are also disclosed.
    Type: Application
    Filed: December 30, 2017
    Publication date: October 4, 2018
    Inventors: Angelo Haller, Harald Huels, Jan Van Lunteren, Joerg-Stephan Vogt
  • Publication number: 20180228028
    Abstract: The invention relates to a method for embedding a discrete electronic device in a chip module. The chip module comprises a multilayer substrate which comprises a plurality of electrically conductive layers stacked above each other and an electrically non-conductive layer arranged between each pair of electrically conductive layers. The chip module is configured to receive one or more chips to be mounted onto a top surface thereof. Each electrically conductive layer comprises one or more electrically conductive structures. A recess is provided in a side surface of the chip module. The discrete electronic device is inserted into the recess. A first electrically conductive connection between a first electrical contact of the discrete electronic device and a first electrically conductive structure is established. Further, a second electrically conductive connection between a second electrical contact of the discrete electronic device and a second electrically conductive structure is established.
    Type: Application
    Filed: April 5, 2018
    Publication date: August 9, 2018
    Inventors: Andreas Huber, Harald Huels, Stefano S. Oggioni, Thomas Strach, Thomas-Michael Winkel
  • Patent number: 10010000
    Abstract: A system for manufacturing a product includes a mating connector connected to solder pins to provide an electrical conducting path, the solder pins being aligned against solder pads so that each solder pin is thermally and electrically connected to its corresponding solder pad by a solder paste bead. The system also includes a controller to adjust electrical resistive heating of a solder paste bead during a soldering process according to a temperature of the solder paste bead. A method of manufacturing a product includes aligning the solder pins against the solder pads, connecting the mating connector to the solder pins, and heating a solder paste bead by an electrical resistive heating, the solder paste bead undergoing a soldering process, where a temperature of the solder paste bead is being evaluated and the electrical resistive heating is adjusted according to the temperature of the solder paste bead.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: June 26, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bruce J. Chamberlin, Andreas Huber, Harald Huels, Thomas-Michael Winkel
  • Patent number: 9980385
    Abstract: The invention relates to a method for embedding a discrete electronic device in a chip module. The chip module comprises a multilayer substrate which comprises a plurality of electrically conductive layers stacked above each other and an electrically non-conductive layer arranged between each pair of electrically conductive layers. The chip module is configured to receive one or more chips to be mounted onto a top surface thereof. Each electrically conductive layer comprises one or more electrically conductive structures. A recess is provided in a side surface of the chip module. The discrete electronic device is inserted into the recess. A first electrically conductive connection between a first electrical contact of the discrete electronic device and a first electrically conductive structure is established. Further, a second electrically conductive connection between a second electrical contact of the discrete electronic device and a second electrically conductive structure is established.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: May 22, 2018
    Assignee: International Business Machines Corporation
    Inventors: Andreas Huber, Harald Huels, Stefano S. Oggioni, Thomas Strach, Thomas-Michael Winkel
  • Publication number: 20180139851
    Abstract: A system for manufacturing a product includes a mating connector connected to solder pins to provide an electrical conducting path, the solder pins being aligned against solder pads so that each solder pin is thermally and electrically connected to its corresponding solder pad by a solder paste bead. The system also includes a controller to adjust electrical resistive heating of a solder paste bead during a soldering process according to a temperature of the solder paste bead. A method of manufacturing a product includes aligning the solder pins against the solder pads, connecting the mating connector to the solder pins, and heating a solder paste bead by an electrical resistive heating, the solder paste bead undergoing a soldering process, where a temperature of the solder paste bead is being evaluated and the electrical resistive heating is adjusted according to the temperature of the solder paste bead.
    Type: Application
    Filed: January 15, 2018
    Publication date: May 17, 2018
    Inventors: Bruce J. CHAMBERLIN, Andreas HUBER, Harald HUELS, Thomas-Michael WINKEL