Patents by Inventor Hartmut Rudmann

Hartmut Rudmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10886420
    Abstract: The wafer-level manufacturing method makes possible to manufacture ultrathin optical devices such as opto-electronic modules. A clear encapsulation is applied to an initial wafer including active optical components and a wafer-size substrate. Thereon, a photostructurable spectral filter layer is produced which defines apertures. Then, trenches are produced which extend through the clear encapsulation and establish sidewalls of intermediate products. Then, an opaque encapsulation is applied to the intermediate products, thus filling the trenches and producing aperture stops. Cutting through the opaque encapsulation material present in the trenches, singulated optical modules are produced, wherein side walls of the intermediate products are covered by the opaque encapsulation material. The wafer-size substrate can be attached to a rigid carrier wafer during most process steps.
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: January 5, 2021
    Assignee: ams Sensors Singapore Pte. Ltd.
    Inventors: Qichuan Yu, Hartmut Rudmann, Ji Wang, Kian Siang Ng, Simon Gubser, James Eilertsen, Sundar Raman Gnana Sambandam
  • Patent number: 10872999
    Abstract: An optoelectronic module includes first and second optical channels having respective active optoelectronic components. A transparent encapsulation is over the active optoelectronic components, and opaque encapsulation is on the transparent encapsulation. The opaque encapsulation has a first opening over a first active optoelectronic component and a second opening over a second optoelectronic component. The opaque encapsulation forms a ledge in an area of the second opening, and an optical assembly is disposed on the ledge within the second opening over the second optoelectronic component.
    Type: Grant
    Filed: February 17, 2017
    Date of Patent: December 22, 2020
    Assignee: ams Sensors Singapore Pte. Ltd.
    Inventors: Camilla Camarri, Mario Cesana, Hartmut Rudmann
  • Publication number: 20200365778
    Abstract: Various optoelectronic modules are described and include one or more optoelectronic devices. Each optoelectronic module includes one or more optoelectronic devices. Sidewalls laterally surround each optoelectronic device and can be in direct contact with sides of the optoelectronic device or, in some cases, with an overmold surrounding the optoelectronic device. The sidewalls can be composed, for example, of a vacuum injected material that is non-transparent to light emitted by or detectable by the optoelectronic device. The module also includes a passive optical element. Depending on the implementation, the passive optical element can be on a cover for the module, directly on a top surface of the optoelectronic device, or on an overmold surrounding the optoelectronic device. Methods of fabricating such modules are described as well, and can facilitate manufacturing the modules using wafer-level processes.
    Type: Application
    Filed: July 2, 2020
    Publication date: November 19, 2020
    Inventors: Simon Gubser, Mario Cesana, Markus Rossi, Hartmut Rudmann
  • Patent number: 10840396
    Abstract: Optoelectronic modules, such as proximity sensors, two-dimensional and three-dimensional cameras, structured- or encoded-light emitters, and projectors include optical assemblies and active optoelectronic components that are light sensitive or emit light. The optical assemblies are aligned to the active optoelectronic components via alignment spacers and adhesive. The alignment spacers include surfaces operable to limit the lateral migration of adhesive thereby preventing the contamination of the active optoelectronic components with adhesive. In some instances, small optoelectronic module footprints can be maintained without compromising the integrity of the adhesive.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: November 17, 2020
    Assignee: ams Sensors Singapore Pte. Ltd.
    Inventors: Martin Lukas Balimann, Matthias Gloor, Hartmut Rudmann, Nicola Spring
  • Publication number: 20200355885
    Abstract: This disclosure describes optoelectronic modules with locking assemblies and methods for manufacturing the same. The locking assemblies, in some instances, can improve mounting steps during manufacturing and can increase the useful lifetime of the optoelectronic modules into which they are incorporated. The locking assemblies can include overmold protrusions, and optical element housing protrusions, as well as locking edges incorporated into overmold housing components.
    Type: Application
    Filed: October 25, 2018
    Publication date: November 12, 2020
    Applicant: ams Sensors Singapore Pte. Ltd
    Inventors: Bojan TESANOVIC, Mario CESANA, Camilla CAMARRI, Hartmut RUDMANN
  • Patent number: 10771714
    Abstract: Image sensor modules include primary high-resolution imagers and secondary imagers. For example, an image sensor module may include a semiconductor chip including photosensitive regions defining, respectively, a primary camera and a secondary camera. The image sensor module may include an optical assembly that does not substantially obstruct the field-of-view of the secondary camera. Some modules include multiple secondary cameras that have a field-of-view at least as large as the field-of-view of the primary camera. Various features are described to facilitate acquisition of signals that can be used to calculate depth information.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: September 8, 2020
    Assignee: ams Sensors Singapore Pte. Ltd.
    Inventors: Jukka Alasirniö, Tobias Senn, Ohad Meitav, Moshe Doron, Alireza Yasan, Mario Cesana, Florin Cutu, Hartmut Rudmann, Markus Rossi, Peter Roentgen, Daniel Perez Calero, Bassam Hallal, Jens Geiger
  • Publication number: 20200271886
    Abstract: The device (10) comprises a first member (1) and a second member (2) which are stacked upon each other in a direction vertical direction. The first and second members comprise a central portion (C1; C2) each, and the first member (1) comprises at least a first distancing element (4) abutting the second member (2). The device (10) comprises a gap zone (G) and a bonding material (3), wherein the gap zone is peripheral to the central portions (C1; C2), and in the gap zone (G), a gap (5) is present between the first and second members. A portion of the gap (5) is filled by the bonding material (3) bonding the first and second members to each other in a bonding zone (B) comprised in the gap zone. A height (h) of the gap (5) is defined by the first distancing element (4).
    Type: Application
    Filed: August 16, 2018
    Publication date: August 27, 2020
    Inventors: Hartmut Rudmann, Alexander Bietsch
  • Patent number: 10741736
    Abstract: Various optoelectronic modules are described and include one or more optoelectronic devices. Each optoelectronic module includes one or more optoelectronic devices. Sidewalls laterally surround each optoelectronic device and can be in direct contact with sides of the optoelectronic device or, in some cases, with an overmold surrounding the optoelectronic device. The sidewalls can be composed, for example, of a vacuum injected material that is non-transparent to light emitted by or detectable by the optoelectronic device. The module also includes a passive optical element. Depending on the implementation, the passive optical element can be on a cover for the module, directly on a top surface of the optoelectronic device, or on an overmold surrounding the optoelectronic device. Methods of fabricating such modules are described as well, and can facilitate manufacturing the modules using wafer-level processes.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: August 11, 2020
    Assignee: ams Sensors Singapore Pte. Ltd.
    Inventors: Simon Gubser, Mario Cesana, Markus Rossi, Hartmut Rudmann
  • Publication number: 20200200949
    Abstract: The method for manufacturing a multitude of devices comprises: providing a replication tool comprising a tool material; conditioning the replication tool, wherein the conditioning comprises applying a treatment to the tool material, wherein the treatment comprises exposing the tool material to a conditioning material. And it further comprises, after the conditioning: carrying out one or more replication processes, wherein in each of the one or more replication processes, one or more of the devices are produced from a replication material by replication using the replication tool. The treatment can comprise dimensionally changing the tool material by the exposure of the tool material to the conditioning material. Before carrying out the replication processes, the conditioning material can be hardened and removed.
    Type: Application
    Filed: May 2, 2018
    Publication date: June 25, 2020
    Inventors: Qichuan YU, Han Nee NG, Tobias SENN, John A. VIDALLON, Ramon OPEDA, Attilio FERRARI, Hartmut RUDMANN, Martin SCHUBERT
  • Patent number: 10680023
    Abstract: Optoelectronic modules include a silicon substrate in which or on which there is an optoelectronic device. An optics assembly is disposed over the optoelectronic device, and a spacer separates the silicon substrate from the optics assembly. Methods of fabricating such modules also are described.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: June 9, 2020
    Assignee: ams Sensors Singapore Pte. Ltd.
    Inventors: Hartmut Rudmann, Mario Cesana, Jens Geiger, Peter Roentgen, Vincenzo Condorelli
  • Patent number: 10663691
    Abstract: The present disclosure describes imaging techniques and devices having improved autofocus capabilities. The imaging techniques can include actively illuminating a scene and determining distances over the entire scene and so that a respective distance to each object or point in the scene can be determined. Thus, distances to all objects in a scene (within a particular range) at any given instant can be stored. A preview of the image can be displayed so as to allow a user to select a region of the scene of interest. In response to the user's selection, the imager's optical assembly can be adjusted automatically, for example, to a position that corresponds to optimal image capture of objects at the particular distance of the selected region of the scene.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: May 26, 2020
    Assignee: ams Sensors Singapore Pte. Ltd.
    Inventors: Christian Tang-Jespersen, Michael Kiy, Miguel Bruno Vaello Paños, Florin Cutu, James Patrick Long, Hartmut Rudmann
  • Publication number: 20200127156
    Abstract: An optoelectronic module includes first and second optical channels having respective active optoelectronic components. A transparent encapsulation is over the active optoelectronic components, and opaque encapsulation is on the transparent encapsulation. The opaque encapsulation has a first opening over a first active optoelectronic component and a second opening over a second optoelectronic component. The opaque encapsulation forms a ledge in an area of the second opening, and an optical assembly is disposed on the ledge within the second opening over the second optoelectronic component.
    Type: Application
    Filed: February 17, 2017
    Publication date: April 23, 2020
    Inventors: Camila Camarri, Mario Cesana, Hartmut Rudmann
  • Publication number: 20200127147
    Abstract: An optoelectronic module assembly includes an optoelectronic module. The module includes: an active optoelectronic component in or on a mounting substrate, an optical sub-assembly, and a spacer disposed between the mounting substrate and the optical sub-assembly so as to establish a particular distance between the active optoelectronic component and the optical sub-assembly. The optoelectronic module assembly also includes a recessed substrate including first and second surfaces, wherein the second surface is in a plane closer to the optical sub-assembly than is the first surface. The optoelectronic module is mounted on the first surface. The second surface is for mounting other components.
    Type: Application
    Filed: December 18, 2019
    Publication date: April 23, 2020
    Inventors: Martin Lukas BALIMANN, Matthias GLOOR, Philippe BOUCHILLOUX, Jukka ALASIRNIO, Hartmut RUDMANN, Nicola SPRING
  • Patent number: 10566468
    Abstract: An optoelectronic module assembly includes an optoelectronic module. The module includes: an active optoelectronic component in or on a mounting substrate, an optical sub-assembly, and a spacer disposed between the mounting substrate and the optical sub-assembly so as to establish a particular distance between the active optoelectronic component and the optical sub-assembly. The optoelectronic module assembly also includes a recessed substrate including first and second surfaces, wherein the second surface is in a plane closer to the optical sub-assembly than is the first surface. The optoelectronic module is mounted on the first surface. The second surface is for mounting other components.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: February 18, 2020
    Assignee: AMS SENSORS SINGAPORE PTE. LTD
    Inventors: Martin Lukas Balimann, Matthias Gloor, Philippe Bouchilloux, Jukka Alasirniö, Hartmut Rudmann, Nicola Spring
  • Patent number: 10566467
    Abstract: The wafer-level manufacturing method makes possible to manufacture ultrathin optical devices such as opto-electronic modules. A clear encapsulation is applied to an initial wafer including active optical components and a wafer-size substrate, thereon, a photostructurable opaque coating is produced which includes apertures. Then, trenches are produced which extend through the clear encapsulation and establish side walls of intermediate products. Then, an opaque encapsulation is applied to the intermediate products, thus filling the trenches. Cutting through the opaque encapsulation material present in the trenches, singulated optical modules are produced, wherein side walls of the intermediate products are covered by the opaque encapsulation material.
    Type: Grant
    Filed: November 15, 2016
    Date of Patent: February 18, 2020
    Assignee: ams Sensors Singapore Pte. Ltd.
    Inventors: Qichuan Yu, Hartmut Rudmann, Ji Wang, Kian Siang Ng, Simon Gubser, James Eilertsen, Sundar Raman Ghana Sambandam
  • Patent number: 10564262
    Abstract: An optical ranging system includes a demodulation pixel array and a multi-mode light emitter. The multi-mode light emitter includes an illumination source and can generate a diffuse illumination and a discrete illumination in a first and second mode, respectively. Accordingly, in some implementations, the optical ranging system collects distance data via a time-of-flight technique and a structure-light technique. The illumination source can be operable to produce a diffuse illumination in a first mode and a discrete illumination in a second mode.
    Type: Grant
    Filed: October 26, 2016
    Date of Patent: February 18, 2020
    Assignee: AMS SENSORS SINGAPORE PTE. LTD.
    Inventors: Liu Yang, Hartmut Rudmann
  • Patent number: 10551602
    Abstract: An optical device (1) includes two prism bodies (41, 42) and four side panels (71-74) attached to both prism bodies (41, 42). A cavity (9) is thereby enclosed. A first reflector (81) can be present at a first side face (81) of the first prism body (41), and a second reflector (82) can be present at a second side face (82) of the second prism body (42). At least one of the prism bodies (41, 42) and/or at least one of the side panels (71-74) can be at least in part made of a non-transparent dielectric material such as a printed circuit board. In some implementations, an optoelectronic component (90) can be attached to the respective constituent of the optical device (1).
    Type: Grant
    Filed: August 24, 2016
    Date of Patent: February 4, 2020
    Assignee: AMS SENSORS SINGAPORE PTE. LTD.
    Inventors: Nicola Spring, Hartmut Rudmann, Markus Rossi
  • Patent number: 10547385
    Abstract: An optoelectronic module includes a transceiver operable to transmit data optically. The transceiver includes a light emitter to emit light from the module, and a light detector to detect light entering the module. The light detector is disposed at a rotationally symmetric position with respect to a central axis of the module. Such modules can help facilitate the exchange of data optically between two devices.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: January 28, 2020
    Assignee: AMS SENSORS SINGAPORE PTE. LTD.
    Inventors: Bassam Hallal, Hartmut Rudmann, Mario Cesana, Nicole Ebentheuer
  • Patent number: 10527762
    Abstract: A device comprises at least one optics member (O) comprising at least one transparent portion (t) and at least one blocking portion (b). The at least one transparent portion (t) is made of one or more materials substantially transparent for light of at least a specific spectral range, referred to as transparent materials, and the at least one blocking portion (b) is made of one or more materials substantially non-transparent for light of the specific spectral range, referred to as non-transparent materials. The transparent portion (t) comprises at least one passive optical component (L). The at least one passive optical component (L) comprises a transparent element (6) having two opposing approximately flat surfaces substantially perpendicular to a vertical direction in a distance approximately equal to a thickness of the at least one blocking portion (b) measured along the vertical direction, and, attached to the transparent element (6), at least one optical structure (5).
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: January 7, 2020
    Assignee: AMS SENSORS SINGAPORE PTE. LTD.
    Inventors: Hartmut Rudmann, Susanne Westenhöfer, Bojan Tesanovic
  • Publication number: 20190383979
    Abstract: A method for manufacturing an optical device comprising providing a plurality of initials bars each having a first side face presented with a first optical component arrangement; positioning the initial bars in a row with their first side faces facing a neighboring one of the initial bars; fixing the initial bars to obtain a bar arrangement; obtaining prism bars by segmenting the bar arrangement by at least one of the steps: conducting a plurality of cuts so that each prism bar comprises a portion of at least two different ones of the initial bars, separating the bar arrangement into sections along cut lines or by creating cut faces at an angle with initial-bar directions; dividing the first optical component arrangement for obtaining a plurality of passive optical components, wherein each prism bar comprises one or more passive optical components comprising a first reflective face each which is of non-planar shape; segmenting prism bars into parts.
    Type: Application
    Filed: September 15, 2017
    Publication date: December 19, 2019
    Inventors: Markus Rossi, Hartmut Rudmann, Bassam Hallal