Patents by Inventor Hartmut Rudmann

Hartmut Rudmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180205857
    Abstract: Optoelectronic modules include overmolds that support an optical assembly and, in some case, protect wiring providing electrical connections between an image sensor and a printed circuit board (PCB) or other substrate. The disclosure also describes wafer-level fabrication methods for making the modules.
    Type: Application
    Filed: June 29, 2016
    Publication date: July 19, 2018
    Inventors: Sai Mun Chan, Hartmut Rudmann, Tae Yong Ahn, Kyu Won Hwang
  • Patent number: 9997506
    Abstract: A method of forming a wafer stack includes providing a sub-stack comprising a first wafer and a second wafer. The sub-stack includes a first thermally-curable adhesive at an interface between the upper surface of the first wafer and the lower surface of the second wafer. A third wafer is placed on the upper surface of the second wafer. A second thermally-curable adhesive is present at an interface between the upper surface of the second wafer and the lower surface of the third wafer. Ultra-violet (UV) radiation is provided in a direction of the upper surface of the third wafer to cure a UV-curable adhesive in openings in the second wafer and in contact with portions of the third wafer so as to bond the third wafer to the sub-stack at discrete locations. Subsequently, the third wafer and the sub-stack are heated so to cure the first and second thermally-curable adhesives.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: June 12, 2018
    Assignee: Heptagon Micro Optics Pte. Ltd.
    Inventor: Hartmut Rudmann
  • Patent number: 9977153
    Abstract: Various stacks of arrays of beam shaping elements are described. Each array of beam shaping elements can be formed, for example, as part of a monolithic piece that includes a body portion as well as the beam shaping elements. In some implementations, the monolithic pieces may be formed, for example, as integrally formed molded pieces. The monolithic pieces can include one or more features to facilitate stacking, aligning and/or centering of the arrays with respect to one another.
    Type: Grant
    Filed: February 2, 2015
    Date of Patent: May 22, 2018
    Assignee: Heptagon Micro Optics Pte. Ltd.
    Inventors: Hartmut Rudmann, Markus Rossi, Mario Cesana, Ohad Meitav, Peter Roentgen, Jukka Alasirniö, Stephan Heimgartner, Kai Engelhardt
  • Patent number: 9976894
    Abstract: Disclosed are optical devices and methods of manufacturing optical devices. An optical device can include a substrate; an optical emitter chip affixed to the front surface of the substrate; and an optical sensor chip affixed to the front surface of the substrate. The optical sensor chip can include a main sensor and a reference sensor. The optical device can include an opaque dam separating the main optical sensor and the reference sensor. The optical device can include a first transparent encapsulation block encapsulating the optical emitter chip and the reference optical sensor and a second transparent encapsulation block encapsulating the main optical sensor. The optical device can include an opaque encapsulation material encapsulating the first transparent encapsulation block and the second transparent encapsulation block with a first opening above the main optical sensor and a second opening above the optical emitter chip.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: May 22, 2018
    Assignee: Heptagon Micro Optics Pte. Ltd.
    Inventors: Qichuan Yu, Hartmut Rudmann, Ji Wang, Kian Siang Ng, Simon Gubser, Sonja Hanselmann
  • Publication number: 20180136434
    Abstract: The present disclosure describes image sensor modules that can include auto focus control. The modules also include features that can help reduce or eliminate tilt of the module's optical sub-assembly with respect to the plane of the image sensor. In some instances, the modules include features to facilitate highly precise positioning of the optical sub-assembly, and also can result in modules having a very small z height.
    Type: Application
    Filed: April 5, 2016
    Publication date: May 17, 2018
    Applicant: Heptagon Micro Optics Pte. Ltd.
    Inventors: Jukka Alasirniö, Kyu Won Hwang, Hartmut Rudmann
  • Publication number: 20180138222
    Abstract: Optical modules are made using customizable spacers to reduce variations in the focal lengths of the optical channels, to reduce the occurrence of tilt of the optical channels, and/or prevent adhesive from migrating to active portions of an image sensor.
    Type: Application
    Filed: December 21, 2017
    Publication date: May 17, 2018
    Applicant: Heptagon Micro Optics Pte. Ltd.
    Inventors: Hartmut Rudmann, Jukka Alasirniö, Bojan Tesanovic, Tobias Senn, Devanraj Kupusamy, Alexander Bietsch
  • Patent number: 9966493
    Abstract: Manufacturing opto-electronic modules (1) includes providing a substrate wafer (PW) on which detecting members (D) are arranged; providing a spacer wafer (SW); providing an optics wafer (OW), the optics wafer comprising transparent portions (t) transparent for light generally detectable by the detecting members and at least one blocking portion (b) for substantially attenuating or blocking incident light generally detectable by the detecting members; and preparing a wafer stack (2) in which the spacer wafer (SW) is arranged between the substrate wafer (PW) and the optics wafer (OW) such that the detecting members (D) are arranged between the substrate wafer and the optics wafer. Emission members (E) for emitting light generally detectable by the detecting members (D) can be arranged on the substrate wafer (PW). Single modules (1) can be obtained by separating the wafer stack (2) into separate modules.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: May 8, 2018
    Assignee: Heptagon Micro Optics Pte. Ltd.
    Inventors: Hartmut Rudmann, Markus Rossi
  • Publication number: 20180124327
    Abstract: Image sensor modules include primary high-resolution imagers and secondary imagers. For example, an image sensor module may include a semiconductor chip including photosensitive regions defining, respectively, a primary camera and a secondary camera. The image sensor module may include an optical assembly that does not substantially obstruct the field-of-view of the secondary camera. Some modules include multiple secondary cameras that have a field-of-view at least as large as the field-of-view of the primary camera. Various features are described to facilitate acquisition of signals that can be used to calculate depth information.
    Type: Application
    Filed: February 23, 2015
    Publication date: May 3, 2018
    Inventors: Jukka Alasirnio, Tobias Senn, Ohad Meitav, Moshe Doron, Alireza Yasan, Mario Cesana, Florin Cutu, Hartmut Rudmann, Markus Rossi, Peter Roentgen, Daniel Perez Calero, Bassam Hallal, Jens Geiger
  • Publication number: 20180102394
    Abstract: Various optoelectronic modules are described that include an optoelectronic device (e.g., a light emitting or light detecting element) and a transparent cover. Non-transparent material is provided on the sidewalls of the transparent cover, which, in some implementations, can help reduce light leakage from the sides of the transparent cover or can help prevent stray light from entering the module. Fabrication techniques for making the modules also are described.
    Type: Application
    Filed: December 1, 2017
    Publication date: April 12, 2018
    Applicant: Heptagon Micro Optics Pte. Ltd.
    Inventors: Hartmut Rudmann, Simon Gubser, Susanne Westenhöfer, Stephan Heimgartner, Jens Geiger, Sonja Hanselmann, Christoph Friese, Xu Yi, Thng Chong Kim, John A. Vidallon, Ji Wang, Qi Chuan Yu, Kam Wah Leong
  • Publication number: 20180073924
    Abstract: Optoelectronic modules for proximity determination and ambient light sensing include hybrid optical assemblies configured with multiple field-of-views. The field of view in a region of the hybrid optical assembly can be dedicated to a first detector, while the field of views in another region of the hybrid optical assembly can be dedicated to both the emission of light and ambient light sensing. Embodiments relate particularly to implementation in a mobile phone or other portable electronic devices.
    Type: Application
    Filed: February 12, 2016
    Publication date: March 15, 2018
    Applicant: Heptagon Micro Optics Pte. Ltd.
    Inventors: Lukas Steinmann, Hartmut Rudmann
  • Patent number: 9899251
    Abstract: Techniques are described for holding a wafer or wafer sub-stack to facilitate further processing of the wafer of sub-stack. In some implementations, a wafer or wafer sub-stack is held by a vacuum chuck in a manner that can help reduce bending of the wafer or wafer sub-stack.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: February 20, 2018
    Assignee: Heptagon Micro Optics Pte. Ltd.
    Inventors: Hartmut Rudmann, Stephan Heimgartner, John A. Vidallon
  • Patent number: 9887221
    Abstract: Optical modules are made using customizable spacers to reduce variations in the focal lengths of the optical channels, to reduce the occurrence of tilt of the optical channels, and/or prevent adhesive from migrating to active portions of an image sensor.
    Type: Grant
    Filed: February 18, 2015
    Date of Patent: February 6, 2018
    Assignee: Heptagon Micro Optics Pte. Ltd.
    Inventors: Hartmut Rudmann, Jukka Alasirniö, Bojan Tesanovic, Tobias Senn, Devanraj Kupusamy, Alexander Bietsch
  • Patent number: 9875998
    Abstract: Fabricating an optics wafer includes providing a wafer comprising a core region composed of a glass-reinforced epoxy, the wafer further comprising a first resin layer on a top surface of the core region and a second resin layer on a bottom surface of the core region. The wafer further includes vertical transparent regions that's extend through the core region and the first and second resin layers. The wafer is thinned from its top surface and its bottom surface so that a resulting thickness is within a predetermined range without causing glass fibers of the core region to become exposed. Optical structures ate provided on one or more exposed surfaces of at least some of the transparent regions.
    Type: Grant
    Filed: March 16, 2017
    Date of Patent: January 23, 2018
    Assignee: Heptagon Micro Optics Pte. Ltd.
    Inventor: Hartmut Rudmann
  • Publication number: 20180005864
    Abstract: Techniques are described for holding a wafer or wafer sub-stack to facilitate further processing of the wafer of sub-stack. In some implementations, a wafer or wafer sub-stack is held by a vacuum chuck in a manner that can help reduce bending of the wafer or wafer sub-stack.
    Type: Application
    Filed: September 8, 2017
    Publication date: January 4, 2018
    Applicant: Heptagon Micro Optics Pte. Ltd.
    Inventors: Hartmut Rudmann, Stephan Heimgartner, John A. Vidallon
  • Publication number: 20180006192
    Abstract: The present disclosure describes wafer-level processes for fabricating optoelectronic device subassemblies that can be mounted, for example, to a circuit substrate, such as a flexible cable or printed circuit board, and integrated into optoelectronic modules that include one or more optical subassemblies stacked over the optoelectronic device subassembly. The optoelectronic device subassembly can be mounted onto the circuit substrate using solder reflow technology even if the optical subassemblies are composed of materials that are not reflow compatible.
    Type: Application
    Filed: June 23, 2017
    Publication date: January 4, 2018
    Applicant: Heptagon Micro Optics Pte. Ltd.
    Inventors: Hartmut Rudmann, Qichuan Yu, Simon Gubser, Bojan Tesanovic, Xu Yi, Eunice Ho Hui Ong, Hongyuan Liu, Ji Wang, Edmund Koon Tian Lua, Myo Paing, Jian Tang, Ming Jie Lee
  • Patent number: 9859327
    Abstract: Various optoelectronic modules are described that include an optoelectronic device (e.g., a light emitting or light detecting element) and a transparent cover. Non-transparent material is provided on the sidewalls of the transparent cover, which, in some implementations, can help reduce light leakage from the sides of the transparent cover or can help prevent stray light from entering the module. Fabrication techniques for making the modules also are described.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: January 2, 2018
    Assignee: Heptagon Micro Optics Pte. Ltd.
    Inventors: Hartmut Rudmann, Simon Gubser, Susanne Westenhöfer, Stephan Heimgartner, Jens Geiger, Sonja Hanselmann, Christoph Friese, Xu Yi, Thng Chong Kim, John A. Vidallon, Ji Wang, Qi Chuan Yu, Kam Wah Leong
  • Publication number: 20170336543
    Abstract: The method for manufacturing optical light guide elements comprises a) providing a plurality of initial bars, each initial bar extending along a respective initial-bar direction from a first bar end to a second bar end and having a first side face extending from the first bar end to the second bar end, the first side face being reflective; b) positioning the initial bars in a row with their respective initial-bar directions aligned parallel to each other and with their respective first surfaces facing towards a neighboring one of the initial bars; c) fixing the plurality of initial bars with respect to each other in the position achieved in step b) to obtain a bar arrangement.
    Type: Application
    Filed: November 11, 2015
    Publication date: November 23, 2017
    Inventors: Nicola SPRING, Hartmut RUDMANN, Markus ROSSI
  • Patent number: 9826316
    Abstract: A method of fabricating a plurality of MEMS microphone modules by providing a first substrate wafer 62 on which are mounted a plurality of sets comprising an LED 102, an IC chip 22 and a MEM microphone device 24, where the LED 102 and IC chip 22 are surrounded and separated by first spacers 104, 64A, 64, the spacer 104 being much taller, attaching a second substrate on top of the first spacer elements above the IC chip 22, mounting a MEMS microphone device 24 to the second substrate 60, the second substrate not extending over the LED 102, surrounding the MEMS microphone device by second spacers 32A, 32, attaching a cover wafer 28 across the whole first substrate wafer 62 covering all the plurality of sets, forming openings 30 to the MEMS cavities, dividing the substrate wafer 62 into individual MEMS microphone modules through the width of the separating spacers 104, 32, 64. Conductive traces may extend through the spacers.
    Type: Grant
    Filed: May 26, 2014
    Date of Patent: November 21, 2017
    Assignee: Heptagon Micro Optics Pte. Ltd.
    Inventors: Jens Geiger, Markus Rossi, Hartmut Rudmann
  • Publication number: 20170317126
    Abstract: Fabricating optical devices can include mounting a plurality of singulated lens systems over a substrate, adjusting a thickness of the substrate below at least some of the lens systems to provide respective focal length corrections for the lens systems, and subsequently separating the substrate into a plurality of optical modules, each of which includes one of the lens systems mounted over a portion of the substrate. Adjusting a thickness of the substrate can include, for example, micro-machining the substrate to form respective holes below at least some of the lens systems or adding one or more layers below at least some of the lens systems so as to correct for variations in the focal lengths of the lens systems.
    Type: Application
    Filed: July 17, 2017
    Publication date: November 2, 2017
    Applicant: Heptagon Micro Optics Pte. Ltd.
    Inventors: Stephan Heimgartner, Ville Kettunen, Nicola Spring, Alexander Bietsch, Mario Cesana, Hartmut Rudmann, Jukka Alasirnio, Robert Lenart
  • Publication number: 20170309605
    Abstract: A method of forming a wafer stack includes providing a sub-stack comprising a first wafer and a second wafer. The sub-stack includes a first thermally-curable adhesive at an interface between the upper surface of the first wafer and the lower surface of the second wafer. A third wafer is placed on the upper surface of the second wafer. A second thermally-curable adhesive is present at an interface between the upper surface of the second wafer and the lower surface of the third wafer. Ultra-violet (UV) radiation is provided in a direction of the upper surface of the third wafer to cure a UV-curable adhesive in openings in the second wafer and in contact with portions of the third wafer so as to bond the third wafer to the sub-stack at discrete locations. Subsequently, the third wafer and the sub-stack are heated so to cure the first and second thermally-curable adhesives.
    Type: Application
    Filed: June 19, 2017
    Publication date: October 26, 2017
    Applicant: Heptagon Micro Optics Pte. Ltd.
    Inventor: Hartmut Rudmann