Patents by Inventor Herbert L. Ho

Herbert L. Ho has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10170337
    Abstract: A method of making a semiconductor device includes disposing a mask on a substrate; etching the mask to form an opening in the mask; etching a trench in the substrate beneath the opening in the mask; and implanting a dopant in an area of the substrate beneath the opening of the mask, the dopant capable of gettering mobile ions that can contaminate the substrate; wherein the dopant extends through the substrate from a sidewall of the trench and an endwall of the trench.
    Type: Grant
    Filed: January 13, 2016
    Date of Patent: January 1, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Christopher Collins, Mukta G. Farooq, Troy L. Graves-Abe, Brian J. Greene, Robert Hannon, Herbert L. Ho, Chandrasekharan Kothandaraman
  • Patent number: 10083967
    Abstract: A non-volatile memory device with a programmable leakage can be formed employing a trench capacitor. After formation of a deep trench, a metal-insulator-metal stack is formed on surfaces of the deep trench employing a dielectric material that develops leakage path filaments upon application of a programming bias voltage. A set of programming transistors and a leakage readout device can be formed to program, and to read, the state of the leakage level. The non-volatile memory device can be formed concurrently with formation of a dynamic random access memory (DRAM) device by forming a plurality of deep trenches, depositing a stack of an outer metal layer and a node dielectric layer, patterning the node dielectric layer to provide a first node dielectric for each non-volatile memory device that is thinner than a second node dielectric for each DRAM device, and forming an inner metal layer.
    Type: Grant
    Filed: August 1, 2017
    Date of Patent: September 25, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Eduard A. Cartier, Herbert L. Ho, Donghun Kang
  • Patent number: 9911597
    Abstract: A method including forming an oxygen gettering layer on one side of an insulating layer of a deep trench capacitor between the insulating layer and a substrate, the oxygen gettering layer including an aluminum containing compound, and depositing an inner electrode on top of the insulating layer, the inner electrode including a metal.
    Type: Grant
    Filed: May 15, 2017
    Date of Patent: March 6, 2018
    Assignee: International Business Machines Corporation
    Inventors: Takashi Ando, Eduard A. Cartier, Michael P. Chudzik, Aritra Dasgupta, Herbert L. Ho, Donghun Kang, Rishikesh Krishnan, Vijay Narayanan, Kern Rim
  • Publication number: 20180047807
    Abstract: Device structures for a deep trench capacitor and methods of fabricating device structures for a deep trench capacitor. A dielectric layer is formed on a substrate and an opening is formed that extends from a top surface of the dielectric layer through the dielectric layer. A deep trench is formed in the substrate and is aligned with the opening in the dielectric layer. A plate of a deep trench capacitor is formed that is located at least partially inside the deep trench and at least partially inside the opening in the dielectric layer. A diffusion pad is formed that arranged at the top surface of the dielectric layer relative to the opening such that the diffusion pad is coupled with the plate of the deep trench capacitor.
    Type: Application
    Filed: August 10, 2016
    Publication date: February 15, 2018
    Inventors: Herbert L. Ho, Byeong Y. Kim, Joyce C. Liu
  • Publication number: 20170358581
    Abstract: A non-volatile memory device with a programmable leakage can be formed employing a trench capacitor. After formation of a deep trench, a metal-insulator-metal stack is formed on surfaces of the deep trench employing a dielectric material that develops leakage path filaments upon application of a programming bias voltage. A set of programming transistors and a leakage readout device can be formed to program, and to read, the state of the leakage level. The non-volatile memory device can be formed concurrently with formation of a dynamic random access memory (DRAM) device by forming a plurality of deep trenches, depositing a stack of an outer metal layer and a node dielectric layer, patterning the node dielectric layer to provide a first node dielectric for each non-volatile memory device that is thinner than a second node dielectric for each DRAM device, and forming an inner metal layer.
    Type: Application
    Filed: August 1, 2017
    Publication date: December 14, 2017
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Eduard A. Cartier, Herbert L. Ho, Donghun Kang
  • Patent number: 9793341
    Abstract: The present disclosure generally relates to semiconductor structures and, more particularly, to a deep trench capacitor, integrated structures and methods of manufacture. The structure includes: a conductive material formed on an underside of an insulator layer and which acts as a back plate of a deep trench capacitor; an inner conductive layer extending through the insulator layer and an overlying substrate; and a dielectric liner between the inner conductive material and the conductive material, and formed on a sidewall of an opening within the insulator layer and the overlying substrate.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: October 17, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Ali Khakifirooz, Davood Shahrjerdi, Herbert L. Ho, Kangguo Cheng
  • Patent number: 9754945
    Abstract: A non-volatile memory device with a programmable leakage can be formed employing a trench capacitor. After formation of a deep trench, a metal-insulator-metal stack is formed on surfaces of the deep trench employing a dielectric material that develops leakage path filaments upon application of a programming bias voltage. A set of programming transistors and a leakage readout device can be formed to program, and to read, the state of the leakage level. The non-volatile memory device can be formed concurrently with formation of a dynamic random access memory (DRAM) device by forming a plurality of deep trenches, depositing a stack of an outer metal layer and a node dielectric layer, patterning the node dielectric layer to provide a first node dielectric for each non-volatile memory device that is thinner than a second node dielectric for each DRAM device, and forming an inner metal layer.
    Type: Grant
    Filed: August 6, 2014
    Date of Patent: September 5, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Eduard A. Cartier, Herbert L. Ho, Donghun Kang
  • Publication number: 20170250073
    Abstract: A method including forming an oxygen gettering layer on one side of an insulating layer of a deep trench capacitor between the insulating layer and a substrate, the oxygen gettering layer including an aluminum containing compound, and depositing an inner electrode on top of the insulating layer, the inner electrode including a metal.
    Type: Application
    Filed: May 15, 2017
    Publication date: August 31, 2017
    Inventors: Takashi Ando, Eduard A. Cartier, Michael P. Chudzik, Aritra Dasgupta, Herbert L. Ho, Donghun Kang, Rishikesh Krishnan, Vijay Narayanan, Kern Rim
  • Patent number: 9741722
    Abstract: Trench capacitors can be formed between lengthwise sidewalls of semiconductor fins, and source and drain regions of access transistors are formed in the semiconductor fins. A dummy gate structure is formed between end walls of a neighboring pair of semiconductor fins, and limits the lateral extent of raised source and drain regions that are formed by selective epitaxy. The dummy gate structure prevents electrical shorts between neighboring semiconductor fins. Gate spacers can be formed around gate structures and the dummy gate structures. The dummy gate structures can be replaced with dummy replacement gate structures or dielectric material portions, or can remain the same without substitution of any material. The dummy gate structures may consist of at least one dielectric material, or may include electrically floating conductive material portions.
    Type: Grant
    Filed: October 3, 2015
    Date of Patent: August 22, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: John E. Barth, Jr., Kangguo Cheng, Bruce B. Doris, Herbert L. Ho, Ali Khakifirooz, Babar A. Khan, Shom Ponoth, Kern Rim, Kehan Tian, Reinaldo A. Vega
  • Patent number: 9735162
    Abstract: After formation of trench capacitors and source and drain regions and gate structures for access transistors, a dielectric spacer is formed on a first sidewall of each source region, while a second sidewall of each source region and sidewalls of drain regions are physically exposed. Each dielectric spacer can be employed as an etch mask during removal of trench top dielectric portions to form strap cavities for forming strap structures. Optionally, selective deposition of a semiconductor material can be performed to form raised source and drain regions. In this case, the raised source regions grow only from the first sidewalls and do not grow from the second sidewalls. The raised source regions can be employed as a part of an etch mask during formation of the strap cavities. The strap structures are formed as self-aligned structures that are electrically isolated from adjacent access transistors by the dielectric spacers.
    Type: Grant
    Filed: October 3, 2015
    Date of Patent: August 15, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: John E. Barth, Jr., Kangguo Cheng, Herbert L. Ho, Ali Khakifirooz, Ravikumar Ramachandran, Kern Rim, Reinaldo A. Vega
  • Publication number: 20170200620
    Abstract: A method of making a semiconductor device includes disposing a mask on a substrate; etching the mask to form an opening in the mask; etching a trench in the substrate beneath the opening in the mask; and implanting a dopant in an area of the substrate beneath the opening of the mask, the dopant capable of gettering mobile ions that can contaminate the substrate; wherein the dopant extends through the substrate from a sidewall of the trench and an endwall of the trench.
    Type: Application
    Filed: January 13, 2016
    Publication date: July 13, 2017
    Inventors: Christopher Collins, Mukta G. Farooq, Troy L. Graves-Abe, Brian J. Greene, Robert Hannon, Herbert L. Ho, Chandrasekharan Kothandaraman
  • Patent number: 9653535
    Abstract: Method of forming a deep trench capacitor are provided. The method may include forming a deep trench in a substrate; forming a metal-insulator-metal (MIM) stack within a portion of the deep trench, the MIM stack forming including forming an outer electrode by co-depositing a refractory metal and silicon into the deep trench; and filling a remaining portion of the deep trench with a semiconductor.
    Type: Grant
    Filed: August 20, 2015
    Date of Patent: May 16, 2017
    Assignee: International Business Machines Corporation
    Inventors: Nicolas L. Breil, Ricardo A. Donaton, Dong Hun Kang, Herbert L. Ho, Rishikesh Krishnan
  • Patent number: 9653534
    Abstract: A method including forming an oxygen gettering layer on one side of an insulating layer of a deep trench capacitor between the insulating layer and a substrate, the oxygen gettering layer including an aluminum containing compound, and depositing an inner electrode on top of the insulating layer, the inner electrode including a metal.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: May 16, 2017
    Assignee: International Business Machines Corporation
    Inventors: Takashi Ando, Eduard A. Cartier, Michael P. Chudzik, Aritra Dasgupta, Herbert L. Ho, Donghun Kang, Rishikesh Krishnan, Vijay Narayanan, Kern Rim
  • Patent number: 9589965
    Abstract: Methods of forming polysilicon-filled deep trenches for an eDRAM are provided. The method may include forming a plurality of polysilicon-filled deep trenches in a substrate. An epitaxy-retarding dopant is introduced to an upper portion of the trenches. A plurality of fins are then formed over the substrate, with each polysilicon-filled deep trench including a corresponding fin extending thereover. A silicon layer is epitaxially grown over at least the polysilicon-filled deep trench. The dopant in the polysilicon-filled deep trenches acts to control the epitaxial growth of the silicon layer, diminishing or preventing shorts to adjacent fins and/or deep trenches at advanced technology nodes.
    Type: Grant
    Filed: January 22, 2016
    Date of Patent: March 7, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Melissa A. Smith, Sunit S. Mahajan, Herbert L. Ho
  • Patent number: 9564505
    Abstract: Ion implantation to change an effective work function for dual work function metal gate integration is presented. One method may include forming a high dielectric constant (high-k) layer over a first-type field effect transistor (FET) region and a second-type FET region; forming a metal layer having a first effective work function compatible for a first-type FET over the first-type FET region and the second-type FET region; and changing the first effective work function to a second, different effective work function over the second-type FET region by implanting a species into the metal layer over the second-type FET region.
    Type: Grant
    Filed: April 17, 2014
    Date of Patent: February 7, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Michael P. Chudzik, Martin M. Frank, Herbert L. Ho, Mark J. Hurley, Rashmi Jha, Naim Moumen, Vijay Narayanan, Dae-Gyu Park, Vamsi K. Paruchuri
  • Patent number: 9564445
    Abstract: Trench capacitors can be formed between lengthwise sidewalls of semiconductor fins, and source and drain regions of access transistors are formed in the semiconductor fins. A dummy gate structure is formed between end walls of a neighboring pair of semiconductor fins, and limits the lateral extent of raised source and drain regions that are formed by selective epitaxy. The dummy gate structure prevents electrical shorts between neighboring semiconductor fins. Gate spacers can be formed around gate structures and the dummy gate structures. The dummy gate structures can be replaced with dummy replacement gate structures or dielectric material portions, or can remain the same without substitution of any material. The dummy gate structures may consist of at least one dielectric material, or may include electrically floating conductive material portions.
    Type: Grant
    Filed: January 20, 2014
    Date of Patent: February 7, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: John E. Barth, Jr., Kangguo Cheng, Bruce B. Doris, Herbert L. Ho, Ali Khakifirooz, Babar A. Khan, Shom Ponoth, Kern Rim, Kehan Tian, Reinaldo A. Vega
  • Patent number: 9564443
    Abstract: After formation of trench capacitors and source and drain regions and gate structures for access transistors, a dielectric spacer is formed on a first sidewall of each source region, while a second sidewall of each source region and sidewalls of drain regions are physically exposed. Each dielectric spacer can be employed as an etch mask during removal of trench top dielectric portions to form strap cavities for forming strap structures. Optionally, selective deposition of a semiconductor material can be performed to form raised source and drain regions. In this case, the raised source regions grow only from the first sidewalls and do not grow from the second sidewalls. The raised source regions can be employed as a part of an etch mask during formation of the strap cavities. The strap structures are formed as self-aligned structures that are electrically isolated from adjacent access transistors by the dielectric spacers.
    Type: Grant
    Filed: January 20, 2014
    Date of Patent: February 7, 2017
    Assignee: International Business Machines Corporation
    Inventors: John E. Barth, Jr., Kangguo Cheng, Herbert L. Ho, Ali Khakifirooz, Ravikumar Ramachandran, Kern Rim, Reinaldo A. Vega
  • Patent number: 9496329
    Abstract: A deep trench capacitor is provided. The deep trench capacitor may include: a deep trench in a substrate, the deep trench including an lower portion having a width that is wider than a width of the rest of the deep trench; a compressive stress layer against the substrate in the lower portion; a metal-insulator-metal (MIM) stack over the compressive stress layer, the MIM stack including a node dielectric between an inner electrode and an outer electrode; and a semiconductor core within the MIM stack.
    Type: Grant
    Filed: August 20, 2015
    Date of Patent: November 15, 2016
    Assignee: International Business Machines Corporation
    Inventors: Nicolas L. Breil, Ricardo A. Donaton, Dong Hun Kang, Herbert L. Ho, Rishikesh Krishnan
  • Publication number: 20160181353
    Abstract: A method including forming an oxygen gettering layer on one side of an insulating layer of a deep trench capacitor between the insulating layer and a substrate, the oxygen gettering layer including an aluminum containing compound, and depositing an inner electrode on top of the insulating layer, the inner electrode including a metal.
    Type: Application
    Filed: December 17, 2014
    Publication date: June 23, 2016
    Inventors: Takashi Ando, Eduard A. Cartier, Michael P. Chudzik, Aritra Dasgupta, Herbert L. Ho, Donghun Kang, Rishikesh Krishnan, Vijay Narayanan, Kern Rim
  • Publication number: 20160181249
    Abstract: An integrated FinFET and deep trench capacitor structure and methods of manufacture are provided. The method includes forming a plurality of fin structures from a substrate material. The method further includes forming a deep trench capacitor structure, contacting at least selected fin structures. The method further includes forming a liner over the deep trench capacitor structure. The method further includes forming replacement gate structures with the liner over the deep trench capacitor structure protecting the deep trench capacitor structure during deposition and etching processes.
    Type: Application
    Filed: December 17, 2014
    Publication date: June 23, 2016
    Inventors: Guillaume D. BRIEND, Ricardo A. DONATON, Herbert L. HO, Donghun KANG, Babar A. KHAN, Xinhui WANG, Deepal WEHELLA-GAMAGE