Patents by Inventor Hideaki Fukuzawa

Hideaki Fukuzawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10477323
    Abstract: According to one embodiment, a microphone package includes: a pressure sensing element including a film and a device; and a cover. The film generates strain in response to pressure. The device includes: a first electrode; a second electrode; and a first magnetic layer. The first magnetic layer is provided between the first electrode and the second electrode and has a first magnetization. The cover includes: an upper portion; and a side portion. The side portion is magnetic and provided depending on the first magnetization and the second magnetization.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: November 12, 2019
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshihiro Higashi, Yoshihiko Fuji, Michiko Hara, Akiko Yuzawa, Shiori Kaji, Tomohiko Nagata, Akio Hori, Hideaki Fukuzawa
  • Patent number: 10448845
    Abstract: According to one embodiment, a strain sensing element provided on a deformable substrate includes: a first magnetic layer; a second magnetic layer; a spacer layer; and a bias layer. Magnetization of the second magnetic layer changes according to deformation of the substrate. The spacer layer is provided between the first magnetic layer and the second magnetic layer. The second magnetic layer is provided between the spacer layer and the bias layer. The bias layer is configured to apply a bias to the second magnetic layer.
    Type: Grant
    Filed: January 31, 2017
    Date of Patent: October 22, 2019
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshihiko Fuji, Hideaki Fukuzawa, Shiori Kaji
  • Patent number: 10444085
    Abstract: The disclosure relates to a strain sensing element provided on a deformable substrate. The strain sensing element includes: a first magnetic layer; a second magnetic layer; and an intermediate layer. The second magnetic layer includes Fe1?yBy (0<y?0.3). Magnetization of the second magnetic layer changes according to deformation of the substrate. The intermediate layer is provided between the first magnetic layer and the second magnetic layer.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: October 15, 2019
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shiori Kaji, Hideaki Fukuzawa, Yoshihiko Fuji
  • Publication number: 20190295615
    Abstract: A perpendicularly magnetized magnetic tunnel junction (p-MTJ) is disclosed wherein a free layer (FL) has a first interface with a MgO tunnel barrier, a second interface with a Mo or W Hk enhancing layer, and is comprised of FexCoyBz wherein x is 66-80, y is 5-9, z is 15-28, and (x+y+z)=100 to simultaneously provide a magnetoresistive ratio >100%, resistance x area product <5 ohm/?m2, switching voltage <0.15V (direct current), and sufficient Hk to ensure thermal stability to 400° C. annealing. The FL may further comprise one or more M elements such as 0 or N to give (FexCoyBz)wM100-w where w is >90 atomic %. Alternatively, the FL is a trilayer with a FeB layer contacting MgO to induce Hk at the first interface, a middle FeCoB layer for enhanced magnetoresistive ratio, and a Fe or FeB layer adjoining the Hk enhancing layer to increase thermal stability.
    Type: Application
    Filed: March 23, 2018
    Publication date: September 26, 2019
    Inventors: Hideaki Fukuzawa, Vignesh Sundar, Yu-Jen Wang, Ru-Ying Tong
  • Patent number: 10413198
    Abstract: According to one embodiment, a strain sensing element is provided on a film unit configured to be deformed. The strain sensing element includes a functional layer, a first magnetic layer, a second magnetic layer, and a spacer layer. The functional layer includes at least one of an oxide and a nitride. The second magnetic layer is provided between the functional layer and the first magnetic layer. A magnetization of the second magnetic layer is variable in accordance with a deformation of the film unit. The spacer layer is provided between the first magnetic layer and the second magnetic layer. At least a part of the second magnetic layer is amorphous and includes boron.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: September 17, 2019
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshihiko Fuji, Hideaki Fukuzawa, Shiori Kaji, Akio Hori, Tomohiko Nagata, Michiko Hara, Yoshihiro Higashi, Akiko Yuzawa
  • Publication number: 20190239760
    Abstract: According to one embodiment, a strain sensing element provided on a deformable substrate includes: a first magnetic layer; a second magnetic layer; a spacer layer; and a bias layer. Magnetization of the second magnetic layer changes according to deformation of the substrate. The spacer layer is provided between the first magnetic layer and the second magnetic layer. The second magnetic layer is provided between the spacer layer and the bias layer. The bias layer is configured to apply a bias to the second magnetic layer.
    Type: Application
    Filed: January 31, 2017
    Publication date: August 8, 2019
    Inventors: Yoshihiko Fuji, Hideaki Fukuzawa, Shiori Kaji
  • Patent number: 10345162
    Abstract: According to one embodiment, a sensor includes a first sensor unit, a first stacked body, and a film unit. The first sensor unit includes a first magnetic layer, a second magnetic layer, and a first intermediate layer, the first intermediate layer being provided between the first magnetic layer and the second magnetic layer. The first stacked body includes a third magnetic layer, a fourth magnetic layer, and a second intermediate layer, the second intermediate layer being provided between the third magnetic layer and the fourth magnetic layer. The film unit is deformable. A portion of the film unit is disposed between the first sensor unit and the first stacked body.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: July 9, 2019
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Akiko Yuzawa, Hideaki Fukuzawa, Kei Masunishi, Yoshihiro Higashi, Michiko Hara, Yoshihiko Fuji
  • Patent number: 10342439
    Abstract: A strain sensor element comprises a laminated film which has a magnetic free layer, a spacer layer, and a magnetic reference layer. The free layer has a variable magnetization direction and a out-of-plane magnetization direction. The reference layer has a variable magnetization direction which is pinned more strongly than the magnetization of the free layer. The spacer layer provided between the free layer and the reference layer. A pair of electrodes is provided with a plane of the laminated film. A substrate is provided with either of the pair electrodes and can be strained. The rotation angle of the magnetization of the free layer is different from the rotation angle of the magnetization of the reference layer when the substrate is distorted. Electrical resistance is changed depending on the magnetization angle between the free layer and the reference layer, which allows the element to operate as a strain sensor.
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: July 9, 2019
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Alexander Devin Giddings, Hideaki Fukuzawa, Yoshihiko Fuji, Hiromi Yuasa, Michiko Hara, Shuichi Murakami
  • Patent number: 10295578
    Abstract: A full bridge circuit comprises first to fourth magnetic resistance elements. The first and fourth magnetic resistance elements have a first polarity, while the second and third magnetic resistance elements have a second polarity. A comparison circuit compares a first value indicating a difference between a potential of a first connecting node and a first potential and a second value indicating a difference between a potential of a second connecting node and a second potential to determine presence/absence of an external magnetic field. An initial magnetization vector of a magnetization free layer of the first magnetic resistance element is the reverse of that of a magnetization free layer of the second magnetic resistance element. An initial magnetization vector of a magnetization free layer of the third magnetic resistance element is the reverse of that of a magnetization free layer of the fourth magnetic resistance element.
    Type: Grant
    Filed: November 5, 2015
    Date of Patent: May 21, 2019
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshihiro Higashi, Hideaki Fukuzawa, Tetsuro Wamura, Masakazu Yaginuma, Motomichi Shibano
  • Publication number: 20190128752
    Abstract: The disclosure relates to a strain sensing element provided on a deformable substrate. The strain sensing element includes: a first magnetic layer; a second magnetic layer; and an intermediate layer. The second magnetic layer includes Fe1-yBy (0<y?0.3). Magnetization of the second magnetic layer changes according to deformation of the substrate. The intermediate layer is provided between the first magnetic layer and the second magnetic layer.
    Type: Application
    Filed: December 27, 2018
    Publication date: May 2, 2019
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Shiori KAJI, Hideaki Fukuzawa, Yoshihiko Fuji
  • Patent number: 10254305
    Abstract: An inertial sensor includes a base portion, a weight portion, a connection portion, and a first sensing element unit. The connection portion connects the weight portion and the base portion and is capable of being deformed in accordance with a change in relative position of the weight portion with respect to the position of the base portion. The first sensing element unit is provided on a first portion of the connection portion and includes a first magnetic layer, a second magnetic layer, and a nonmagnetic first intermediate layer. The nonmagnetic first intermediate layer is provided between the first magnetic layer and the second magnetic layer.
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: April 9, 2019
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideaki Fukuzawa, Michiko Hara, Yoshihiko Fuji, Yoshihiro Higashi, Shiori Kaji, Akio Hori, Tomohiko Nagata, Akiko Yuzawa, Akira Kikitsu
  • Patent number: 10254315
    Abstract: A current sensor comprises: a plurality of magnetoresistance elements whose resistance value changes by application of an current-induced magnetic field from a current-to-be-measured; and a selection circuit that selects one magnetoresistance element from these plurality of magnetoresistance elements and outputs a signal of a selected magnetoresistance element. In the plurality of magnetoresistance elements, relationships between a magnitude of the applied current-induced magnetic field and the resistance value are different from each other.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: April 9, 2019
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshihiro Higashi, Yoshihiko Fuji, Hideaki Fukuzawa, Tetsuro Wamura, Motomichi Shibano
  • Patent number: 10246324
    Abstract: According to one embodiment, a strain and pressure sensing device includes a semiconductor circuit unit and a sensing unit. The semiconductor circuit unit includes a semiconductor substrate and a transistor. The transistor is provided on a semiconductor substrate. The sensing unit is provided on the semiconductor circuit unit, and has space and non-space portions. The non-space portion is juxtaposed with the space portion. The sensing unit further includes a movable beam, a strain sensing element unit, and first and second buried interconnects. The movable beam has fixed and movable portions, and includes first and second interconnect layers. The fixed portion is fixed to the non-space portion. The movable portion is separated from the transistor and extends from the fixed portion into the space portion. The strain sensing element unit is fixed to the movable portion. The first and second buried interconnects are provided in the non-space portion.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: April 2, 2019
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Hideaki Fukuzawa, Tatsuya Ohguro, Akihiro Kojima, Yoshiaki Sugizaki, Mariko Takayanagi, Yoshihiko Fuji, Akio Hori, Michiko Hara
  • Patent number: 10234343
    Abstract: According to one embodiment, a pressure sensor includes a film part, and a sensing unit. A circumscribing rectangle circumscribing a configuration of a film surface of the film part has a first side, a second side, a third side connected to one end of the first side and one end of the second side, a fourth side connected to one other end of the first side and one other end of the second side, and a centroid of the circumscribing rectangle. The circumscribing rectangle includes a first region enclosed by the first side, line segments connecting the centroid to the one end of the first side, and to the one other end of the first side. The sensing unit includes sensing elements provided on a portion of the film surface overlapping the first region. Each sensing element includes a first, second magnetic layers, and a spacer layer.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: March 19, 2019
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshihiko Fuji, Kei Masunishi, Hideaki Fukuzawa, Yoshihiro Higashi, Michiko Hara, Akio Hori, Tomohiko Nagata, Shiori Kaji, Akiko Yuzawa
  • Patent number: 10190923
    Abstract: The disclosure relates to a strain sensing element provided on a deformable substrate. The strain sensing element includes: a first magnetic layer; a second magnetic layer; and an intermediate layer. The second magnetic layer includes Fe1-yBy (0<y?0.3). Magnetization of the second magnetic layer changes according to deformation of the substrate. The intermediate layer is provided between the first magnetic layer and the second magnetic layer.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: January 29, 2019
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shiori Kaji, Hideaki Fukuzawa, Yoshihiko Fuji
  • Publication number: 20180356308
    Abstract: A pressure sensor according to an embodiment includes: a support member; a membrane supported by the support and having flexibility; and a strain detection element formed on the membrane. The strain detection element includes a first magnetic layer formed on the membrane and having a magnetization, a second magnetic layer having a magnetization, and an intermediate layer formed between the first magnetic layer and the second magnetic layer. A direction of at least one of the magnetization of the first magnetic layer and the magnetization of the second magnetic layer changes relatively to that of the other depending on a strain of the membrane. Moreover, the membrane includes an oxide layer that includes aluminum.
    Type: Application
    Filed: August 21, 2018
    Publication date: December 13, 2018
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Kazuaki OKAMOTO, Akio Hori, Hideaki Fukuzawa, Yoshihiko Fuji, Akiko Yuzawa
  • Publication number: 20180352342
    Abstract: According to one embodiment, a microphone package includes: a pressure sensing element including a film and a device; and a cover. The film generates strain in response to pressure. The device includes: a first electrode; a second electrode; and a first magnetic layer. The first magnetic layer is provided between the first electrode and the second electrode and has a first magnetization. The cover includes: an upper portion; and a side portion. The side portion is magnetic and provided depending on the first magnetization and the second magnetization.
    Type: Application
    Filed: August 3, 2018
    Publication date: December 6, 2018
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Yoshihiro Higashi, Yoshihiko Fuji, Michiko Hara, Akiko Yuzawa, Shiori Kaji, Tomohiko Nagata, Akio Hori, Hideaki Fukuzawa
  • Publication number: 20180321102
    Abstract: A strain detection element is provided above a deformable membrane. Moreover, this strain detection element includes an electrode and a stacked body, the stacked body including: a first magnetic layer whose magnetization direction is variable according to a deformation of the membrane; a second magnetic layer provided facing the first magnetic layer; and an intermediate layer provided between these first magnetic layer and second magnetic layer, and at least part of the first magnetic layer is amorphous, and the electrode includes a metal layer configured from a Cu—Ag alloy.
    Type: Application
    Filed: July 18, 2018
    Publication date: November 8, 2018
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Yoshihiko FUJI, Hideaki Fukuzawa, Akio Hori, Shiori Kaji
  • Publication number: 20180299338
    Abstract: According to one embodiment, the pressure sensor includes a supporting portion, a film portion, and a strain detecting element. The film portion is supported by the supporting portion. The strain detecting element is disposed on a part of the film portion. The strain detecting element includes a first magnetic layer, a second magnetic layer, and an intermediate layer. A magnetization direction of the first magnetic layer is variable according to a deformation of the film portion. The first magnetic layer has a first facing surface. The second magnetic layer has a second facing surface. The second facing surface faces the first facing surface. The intermediate layer is disposed between the first magnetic layer and the second magnetic layer. An area of the first facing surface is larger than an area of the second facing surface.
    Type: Application
    Filed: June 22, 2018
    Publication date: October 18, 2018
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yoshihiko FUJI, Hideaki Fukuzawa, Yoshihiro Higashi, Shiori Kaji
  • Patent number: 10082430
    Abstract: According to one embodiment, a pressure sensor includes a base, and a first sensor unit. The first sensor unit includes a first transducer thin film, a first strain sensing device and a second strain sensing device. The first strain sensing device includes a first magnetic layer, a second magnetic layer, and a first intermediate layer provided between the first and the second magnetic layers. The second strain sensing device is provided apart from the first strain sensing device on the first membrane surface and provided at a location different from a location of the barycenter, the second strain sensing device including a third magnetic layer, a fourth magnetic layer, and a second intermediate layer provided between the third and the fourth magnetic layers, the first and the second intermediate layers being nonmagnetic. The first and the second strain sensing devices, and the barycenter are in a straight line.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: September 25, 2018
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideaki Fukuzawa, Akihiko Enamito, Osamu Nishimura, Michiko Hara, Hiromi Yuasa, Yoshihiko Fuji, Masayuki Kii, Eizo Fujisawa