Patents by Inventor Ho-Hsiang Chen

Ho-Hsiang Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180203972
    Abstract: A method of verifying an integrated circuit stack includes adding a dummy layer to a contact pad of a functional circuit, wherein a location of the dummy layer is determined based on a location of a contact pad of a connecting substrate. The method further includes converting the dummy layer location to the connecting substrate. The method further includes determining whether the dummy layer is aligned with the contact pad of the connecting substrate. The method further includes adjusting the dummy layer location in the functional circuit when the dummy layer location is misaligned with the contact pad of the connecting substrate.
    Type: Application
    Filed: March 14, 2018
    Publication date: July 19, 2018
    Inventors: Feng Wei KUO, Shuo-Mao CHEN, Chin-Yuan HUANG, Kai-Yun LIN, Ho-Hsiang CHEN, Chewn-Pu JOU
  • Patent number: 9922160
    Abstract: A method of verifying an integrated circuit stack includes adding a dummy layer to a contact pad of a functional circuit, wherein a location of the dummy layer is determined based on a location of a contact pad of a connecting substrate. The method further includes converting the dummy layer location to the connecting substrate; and determining whether the dummy layer is aligned with the contact pad of the connecting substrate. The method further includes performing an LVS check of the connecting substrate including the dummy layer; and adjusting the dummy layer location in the functional circuit if the dummy layer location is misaligned with the contact pad of the connecting substrate or the connecting substrate fails the LVS check. The method further includes repeating the converting step, the determining step, and the performing the LVS check step based on the adjusted dummy layer location.
    Type: Grant
    Filed: February 12, 2015
    Date of Patent: March 20, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Feng Wei Kuo, Shuo-Mao Chen, Chin-Yuan Huang, Kai-Yun Lin, Ho-Hsiang Chen, Chewn-Pu Jou
  • Patent number: 9923101
    Abstract: A semiconductor structure is provided. The semiconductor structure includes a floating substrate; and a capacitor grounded and connected to the floating substrate. A method of manufacturing a semiconductor structure is also provided.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: March 20, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsiao-Tsung Yen, Yu-Ling Lin, Chin-Wei Kuo, Ho-Hsiang Chen, Chewn-Pu Jou, Min-Chie Jeng
  • Patent number: 9917555
    Abstract: An amplifier includes an input node, an output node, a transistor and a transformer. The input node is configured to receive a first signal. The output node is configured to output an amplified first signal. The transistor includes a first terminal, a second terminal and a third terminal. The first terminal is coupled to the input node and a first supply voltage source. The second terminal is coupled to a second supply voltage source and the output node. The third terminal is coupled to a reference node. The transformer is coupled to the first terminal and the third terminal. The transistor is configured to operate in a sub-threshold region and a near-triode region.
    Type: Grant
    Filed: August 16, 2016
    Date of Patent: March 13, 2018
    Assignee: TWAIWAN SEMICONDUCTOR MANUFACTORING COMPANY, LTD.
    Inventors: Jun-De Jin, Chi-Hsien Lin, Ho-Hsiang Chen, Hsien-Yuan Liao, Ying-Ta Lu
  • Publication number: 20170345930
    Abstract: Semiconductor structures and methods for forming a semiconductor structure are provided. An active semiconductor region is disposed in a substrate. A gate is formed over the substrate. Source and drain regions of a transistor are formed in the active semiconductor region on opposite sides of the gate. The drain region has a first width, and the source region has a second width that is not equal to the first width.
    Type: Application
    Filed: November 2, 2016
    Publication date: November 30, 2017
    Inventors: HSIEN-YUAN LIAO, CHIEN-CHIH HO, CHI-HSIEN LIN, HUA-CHOU TSENG, HO-HSIANG CHEN, RU-GUN LIU, TZU-JIN YEH, YING-TA LU
  • Patent number: 9831173
    Abstract: A strip-line includes a ground plane extending through a plurality of dielectric layers over a substrate; a signal line over the substrate and on a side of the ground plane; a first plurality of metal strips under the signal line and in a first metal layer, wherein the first plurality of metal strips is parallel to each other, and is spaced apart from each other by spaces; and a second plurality of metal strips under the signal line and in a second metal layer over the first metal layer. The second plurality of metal strips vertically overlaps the spaces. The first plurality of metal strips is electrically coupled to the second plurality of metal strips through the ground plane, and no via physically contacts the first plurality of metal strips and the second plurality of metal strips.
    Type: Grant
    Filed: July 17, 2015
    Date of Patent: November 28, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Ling Lin, Hsiao-Tsung Yen, Ho-Hsiang Chen, Chin-Wei Kuo, Chewn-Pu Jou
  • Patent number: 9728847
    Abstract: An antenna includes a plurality of upper electrodes in a first metal layer, a plurality of lower electrodes in a second metal layer, a plurality of side electrodes connecting the upper electrodes with the lower electrodes, and a ground structure. The upper electrodes, the lower electrodes and the side electrodes form one continuous electrode. The continuous electrode extends in a first direction away from a reference plane over a substrate. The upper electrodes extend in a second direction different from the first direction. The upper electrodes, the lower electrodes, and the side electrodes are embedded within a waveguide structure that includes a dielectric material. The substrate has a length extending in the first direction greater than a length the continuous electrode extends in the first direction. The waveguide structure includes a portion of the substrate in a region beyond the length of the continuous electrode in the first direction.
    Type: Grant
    Filed: October 28, 2015
    Date of Patent: August 8, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Cheng-Hsien Hung, Yu-Ling Lin, Ho-Hsiang Chen
  • Patent number: 9698146
    Abstract: A varactor includes at least one semiconductor fin, a first gate, and a second gate physically disconnected from the first gate. The first gate and the second gate form a first FinFET and a second FinFET, respectively, with the at least one semiconductor fin. The source and drain regions of the first FinFET and the second FinFET are interconnected to form the varactor.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: July 4, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chi-Hsien Lin, Ying-Ta Lu, Hsien-Yuan Liao, Ho-Hsiang Chen, Chewn-Pu Jou, Fu-Lung Hsueh
  • Publication number: 20170179894
    Abstract: An amplifier includes an input node, an output node, a transistor and a transformer. The input node is configured to receive a first signal. The output node is configured to output an amplified first signal. The transistor includes a first terminal, a second terminal and a third terminal. The first terminal is coupled to the input node and a first supply voltage source. The second terminal is coupled to a second supply voltage source and the output node. The third terminal is coupled to a reference node. The transformer is coupled to the first terminal and the third terminal. The transistor is configured to operate in a sub-threshold region and a near-triode region.
    Type: Application
    Filed: August 16, 2016
    Publication date: June 22, 2017
    Inventors: Jun-De JIN, Chi-Hsien LIN, Ho-Hsiang CHEN, Hsien-Yuan LIAO, Ying-Ta LU
  • Patent number: 9658275
    Abstract: An apparatus includes three components. The first component includes a first transmission line; the second component is coupled with the first component and includes a second transmission line; and the third component electrically coupled with the first component and/or the second component. The transmission lines each include a substrate with a p-well or n-well within the substrate and a shielding layer over the p-well or n-well. The transmission lines also each include a plurality of intermediate conducting layers over the shielding layer, the plurality of intermediate conducting layers coupled by a plurality of vias. The transmission lines further each include a top conducting layer over the plurality of intermediate conducting layers.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: May 23, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiao-Tsung Yen, Chin-Wei Kuo, Ho-Hsiang Chen, Sa-Lly Liu, Yu-Ling Lin
  • Patent number: 9660019
    Abstract: A concentric capacitor structure generally comprising concentric capacitors is disclosed. Each concentric capacitor comprises a first plurality of perimeter plates formed on a first layer of a substrate and a second plurality of perimeter plates formed on a second layer of the substrate. The first plurality of perimeter plates extend in a first direction and the second plurality of perimeter plates extend in a second direction different than the first direction. A first set of the first plurality of perimeter plates is electrically coupled to a first set of the second plurality of perimeter plates and a second set of the first plurality of perimeter plates is electrically coupled to a second set of the second plurality of perimeter plates. A plurality of capacitive cross-plates are formed in the first layer such that each cross-plate overlaps least two of the second plurality of perimeter plates.
    Type: Grant
    Filed: March 21, 2016
    Date of Patent: May 23, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ying-Ta Lu, Chi-Hsien Lin, Hsien-Yuan Liao, Ho-Hsiang Chen, Tzu-Jin Yeh
  • Publication number: 20170140867
    Abstract: A device includes a substrate, and a vertical inductor over the substrate. The vertical inductor includes a plurality of parts formed of metal, wherein each of the parts extends in one of a plurality of planes perpendicular to a major surface of the substrate. Metal lines interconnect neighboring ones of the plurality of parts of the vertical inductor.
    Type: Application
    Filed: January 30, 2017
    Publication date: May 18, 2017
    Inventors: Hsiao-Tsung Yen, Huan-Neng Chen, Yu-Ling Lin, Chin-Wei Kuo, Mei-Show Chen, Ho-Hsiang Chen, Min-Chie Jeng
  • Patent number: 9633940
    Abstract: The present disclosure provides a semiconductor device. The semiconductor device includes a semiconductor substrate having an integrated circuit (IC) device; an interconnect structure disposed on the semiconductor substrate and coupled with the IC device; and a transformer disposed on the semiconductor substrate and integrated in the interconnect structure. The transformer includes a first conductive feature; a second conductive feature inductively coupled with the first conductive feature; a third conductive feature electrically connected to the first conductive feature; and a fourth conductive feature electrically connected to the second conductive feature. The third and fourth conductive features are designed and configured to be capacitively coupled to increase a coupling coefficient of the transformer.
    Type: Grant
    Filed: July 20, 2015
    Date of Patent: April 25, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hsiao-Tsung Yen, Chin-Wei Kuo, Ho-Hsiang Chen, Min-Chie Jeng, Yu-Ling Lin
  • Patent number: 9559053
    Abstract: A device includes a substrate, and a vertical inductor over the substrate. The vertical inductor includes a plurality of parts formed of metal, wherein each of the parts extends in one of a plurality of planes perpendicular to a major surface of the substrate. Metal lines interconnect neighboring ones of the plurality of parts of the vertical inductor.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: January 31, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiao-Tsung Yen, Huan-Neng Chen, Yu-Ling Lin, Chin-Wei Kuo, Mei-Show Chen, Ho-Hsiang Chen, Min-Chie Jeng
  • Patent number: 9484312
    Abstract: An inductor shielding structure includes a first conductive layer including a plurality of first conductive lines having a first width and a plurality of second conductive lines having a second width. The inductor shielding structure further includes a second conductive layer over the first conductive layer. The second conductive layer includes at least one third conductive line having a third width and a plurality of fourth conductive lines having a fourth width. Each conductive line of the at least one third conductive line is parallel to each conductive line of the plurality of first conductive lines. Each conductive line of the plurality of fourth conductive lines is parallel to each conductive line of the plurality of second conductive lines. The first width is different from the second width, or the third width is different from the fourth width.
    Type: Grant
    Filed: January 20, 2015
    Date of Patent: November 1, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chi-Hsien Lin, Hsien-Yuan Liao, Ying-Ta Lu, Ho-Hsiang Chen, Tzu-Jin Yeh
  • Patent number: 9438163
    Abstract: The present disclosure relates to a device and method to reduce voltage headroom within a voltage-controlled oscillator by utilizing trifilar coupling or transformer feedback with a capacitive coupling technique. In some embodiments of trifilar coupling, a VCO comprises cross-coupled single-ended oscillators, wherein the voltage of first gate within a first single-ended oscillator is separated from the voltage of a second drain within a second single-ended oscillator within the cross-coupled pair.
    Type: Grant
    Filed: February 3, 2015
    Date of Patent: September 6, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ying-Ta Lu, Hsien-Yuan Liao, Ho-Hsiang Chen, Chewn-Pu Jou
  • Patent number: 9425735
    Abstract: An apparatus is disclosed that includes a first cross-coupled transistor pair, a second cross-coupled transistor pair, at least one capacitance unit, and a first, second, third, and fourth inductive elements. The first cross-coupled transistor pair and second cross-coupled transistor pair are coupled to a pair of first output nodes and a pair of second output nodes, respectively. The at least one capacitance unit is coupled to at least one of the pair of first output nodes and the pair of second output nodes. The first and second inductive elements are electrically coupled to the first output nodes, respectively. The third inductive element is electrically coupled to one of the second output nodes and DC-biased and magnetically coupled to the first inductive element. The fourth inductive element is electrically coupled to the other of the second output nodes and DC-biased and magnetically coupled to the second inductive element.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: August 23, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ying-Ta Lu, Hsien-Yuan Liao, Chi-Hsien Lin, Hsiao-Tsung Yen, Ho-Hsiang Chen, Chewn-Pu Jou
  • Publication number: 20160239598
    Abstract: A method of verifying an integrated circuit stack includes adding a dummy layer to a contact pad of a functional circuit, wherein a location of the dummy layer is determined based on a location of a contact pad of a connecting substrate. The method further includes converting the dummy layer location to the connecting substrate; and determining whether the dummy layer is aligned with the contact pad of the connecting substrate. The method further includes performing an LVS check of the connecting substrate including the dummy layer; and adjusting the dummy layer location in the functional circuit if the dummy layer location is misaligned with the contact pad of the connecting substrate or the connecting substrate fails the LVS check. The method further includes repeating the converting step, the determining step, and the performing the LVS check step based on the adjusted dummy layer location.
    Type: Application
    Filed: February 12, 2015
    Publication date: August 18, 2016
    Inventors: Feng Wei KUO, Shuo-Mao CHEN, Chin-Yuan HUANG, Kai-Yun LIN, Ho-Hsiang CHEN, Chewn-Pu JOU
  • Publication number: 20160211220
    Abstract: An inductor shielding structure includes a first conductive layer including a plurality of first conductive lines having a first width and a plurality of second conductive lines having a second width. The inductor shielding structure further includes a second conductive layer over the first conductive layer. The second conductive layer includes at least one third conductive line having a third width and a plurality of fourth conductive lines having a fourth width. Each conductive line of the at least one third conductive line is parallel to each conductive line of the plurality of first conductive lines. Each conductive line of the plurality of fourth conductive lines is parallel to each conductive line of the plurality of second conductive lines. The first width is different from the second width, or the third width is different from the fourth width.
    Type: Application
    Filed: January 20, 2015
    Publication date: July 21, 2016
    Inventors: Chi-Hsien LIN, Hsien-Yuan LIAO, Ying-Ta LU, Ho-Hsiang CHEN, Tzu-Jin YEH
  • Publication number: 20160204191
    Abstract: A concentric capacitor structure generally comprising concentric capacitors is disclosed. Each concentric capacitor comprises a first plurality of perimeter plates formed on a first layer of a substrate and a second plurality of perimeter plates formed on a second layer of the substrate. The first plurality of perimeter plates extend in a first direction and the second plurality of perimeter plates extend in a second direction different than the first direction. A first set of the first plurality of perimeter plates is electrically coupled to a first set of the second plurality of perimeter plates and a second set of the first plurality of perimeter plates is electrically coupled to a second set of the second plurality of perimeter plates. A plurality of capacitive cross-plates are formed in the first layer such that each cross-plate overlaps least two of the second plurality of perimeter plates.
    Type: Application
    Filed: March 21, 2016
    Publication date: July 14, 2016
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ying-Ta LU, Chi-Hsien LIN, Hsien-Yuan LIAO, Ho-Hsiang CHEN, Tzu-Jin YEH