Patents by Inventor Hsiang-Wei Lin

Hsiang-Wei Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9082770
    Abstract: One or more techniques or systems for forming a damascene gap structure are provided herein. In some embodiments, a gap is formed between a first etch stop layer (ESL) and an ESL seal region. For example, the gap is formed by removing a portion of a low-k (LK) dielectric region above an oxide region and removing the oxide region. In some embodiments, the oxide region below the LK dielectric region facilitates removal of the LK dielectric region, at least because the oxide region enhances a bottom etch rate of a bottom of the LK dielectric region such that the bottom etch rate is similar to a wall etch rate of a wall of the LK dielectric region. In this manner, a damascene gap structure associated with a cleaner gap is provided, for example.
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: July 14, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Yi-Nien Su, Hsiang-Wei Lin
  • Publication number: 20140272135
    Abstract: In deposition devices, a precursor is directed at a substrate within a deposition chamber, and a block plate comprising a set of block plate apertures adjusts the direction and volume of the outflowing precursor. However, arrangements of block plate apertures that are suitable for some deposition scenarios (such as one type of precursor) are unsuitable for other deposition scenarios, resulting in precursor deposition that is undesirably thick, thin, or inconsistent. A set of block plate masks positioned over respective zones of the block plate are adjustable to align a set of masking apertures with respect to the block plate apertures, such as by operating a block plate motor to rotate a ring-shaped block plate mask over a cylindrical zone of the block plate. This configuration enables adjustable exposure of the block plate apertures to control the adjusted outflow of precursor through the block plate.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Inventors: Chih-Chiang Chang, Yi-Nien Su, Su-Jen Sung, Chao-Chun Wang, Hsiang-Wei Lin
  • Publication number: 20140272193
    Abstract: Plasma-enhanced chemical vapor deposition (PECVD) devices enable the generation of a plasma in a plasma zone of a deposition chamber, which reacts with a surface of a substrate to form a deposited film in the fabrication of a semiconductor component. The plasma generator is often positioned over the center of the substrate, and the generated plasma often remains in the vicinity of the plasma generator, resulting in a thicker deposition near the center than at the edges of the substrate. Tighter process control is achievable by positioning one or more electromagnets in a periphery of the plasma zone and supplying power to generate a magnetic field, thereby inducing the charged plasma to achieve a more consistent distribution within the plasma zone and more uniform deposition on the substrate. Variations in the number, configuration, and powering of the electromagnets enable various redistributive effects on the plasma within the plasma zone.
    Type: Application
    Filed: April 3, 2013
    Publication date: September 18, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Hsiang-Wei Lin, Chia-Ho Chen, Bo-Hung Lin