Patents by Inventor Ivelin Angelov

Ivelin Angelov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170236694
    Abstract: A system is provided and includes a substrate processing chamber, one or more injectors, and a controller. The one or more injectors inject an electronegative gas, a baseline electropositive gas, and an additional electropositive gas into the substrate processing chamber. The electronegative gas includes an etch precursor. The additional electropositive gas mixes with and increases electron density of a plasma in the substrate processing chamber. The controller is configured to set an amount, flow rate or pressure of the additional electropositive gas based on at least one of a pressure of the electronegative gas or an electron affinity level of the additional electropositive gas.
    Type: Application
    Filed: February 8, 2017
    Publication date: August 17, 2017
    Inventors: Kwame Eason, James Eugene Caron, Ivelin Angelov, Joon Hong Park, Dengliang Yang
  • Publication number: 20170200586
    Abstract: A gas injector for a substrate processing system includes a first injector housing including a base portion defining a first gas flow channel; a projecting portion extending from the base portion; and a second gas flow channel extending through the base portion and the projecting portion. The gas injector includes a second injector housing including a first cavity including a first opening, a second opening and a first plurality of gas through holes arranged around the second opening. The first gas flow channel communicates with the first plurality of gas through holes. The second injector housing includes a second cavity that includes a second plurality of gas through holes and that extends from the second opening of the first cavity. The second gas flow channel communicates with the second plurality of gas through holes. Gas in the first and second gas flow channels flows into a processing chamber without mixing.
    Type: Application
    Filed: January 5, 2017
    Publication date: July 13, 2017
    Inventors: Jason Lee Treadwell, Ivelin Angelov, Linda Marquez, Cristian Siladie
  • Patent number: 9679749
    Abstract: A grid assembly for a substrate processing system includes a first portion including a first body defining a central opening, an inlet, an outlet, and an upper manifold that is located in the first body and that is in fluid communication with the inlet or the outlet. A second portion is arranged adjacent to the first portion and includes a second body defining a central opening. A plurality of tubes is arranged in the central opening of the second body. First ones of the plurality of tubes are in fluid communication with the upper manifold. A lower manifold is located in the second body and is in fluid communication with the other one of the inlet or the outlet. Second ones of the plurality of tubes are in fluid communication with the lower manifold. The grid assembly is arranged between a remote plasma source and a substrate.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: June 13, 2017
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Ivelin Angelov, Serge Kosche
  • Publication number: 20170154804
    Abstract: One system includes a chamber, a chuck assembly, and an ion source. The chuck assembly includes a substrate support and a precession assembly with a center support coupled to a stationary center point of an under region of the substrate support. The precession assembly includes first and second actuators connected to first and second locations, respectively, that are in the under region off-set from the center point. The precession assembly imparts a precession motion to the substrate support when the first actuator and the second actuator move up and down relative to the center support, and the precession motion imparted to the substrate causes a rotating tilt of the substrate support without rotation of the substrate support. The rotating tilt of the substrate is configured to cause ions generated by the ion source to impinge upon a surface of the substrate in continually varying angles of incidence.
    Type: Application
    Filed: December 1, 2015
    Publication date: June 1, 2017
    Inventors: Ivelin Angelov, Ivan L. Berry, III
  • Publication number: 20160247688
    Abstract: Methods of selectively etching silicon nitride on a semiconductor substrate by providing silicon to the plasma to achieve high etch selectivity of silicon nitride to silicon-containing materials are provided. Methods involve providing silicon from a solid or fluidic silicon source or both. A solid silicon source may be upstream of a substrate, such as at or near a showerhead of a process chamber, or in a remote plasma generator. A silicon gas source may be flowed to the plasma during etch.
    Type: Application
    Filed: April 1, 2015
    Publication date: August 25, 2016
    Inventors: Helen H. Zhu, Linda Marquez, Faisal Yaqoob, Pilyeon Park, Ivan L. Berry, III, Ivelin A. Angelov, Joon Hong Park
  • Publication number: 20160181116
    Abstract: Methods of selectively etching silicon nitride are provided. Silicon nitride layers are exposed to a fluorinating gas and nitric oxide (NO), which may be formed by reacting nitrous oxide (N2O) and oxygen (O2) in a plasma. Methods also include defluorinating the substrate prior to turning off the plasma to increase etch selectivity of silicon nitride.
    Type: Application
    Filed: December 18, 2014
    Publication date: June 23, 2016
    Inventors: Ivan L. Berry, III, Ivelin Angelov, Linda Marquez, Faisal Yaqoob, Pilyeon Park, Helen H. Zhu, Bayu Atmaja Thedjoisworo, Zhao Li
  • Publication number: 20160093472
    Abstract: A grid assembly for a substrate processing system includes a first portion including a first body defining a central opening, an inlet, an outlet, and an upper manifold that is located in the first body and that is in fluid communication with the inlet or the outlet. A second portion is arranged adjacent to the first portion and includes a second body defining a central opening. A plurality of tubes is arranged in the central opening of the second body. First ones of the plurality of tubes are in fluid communication with the upper manifold. A lower manifold is located in the second body and is in fluid communication with the other one of the inlet or the outlet. Second ones of the plurality of tubes are in fluid communication with the lower manifold. The grid assembly is arranged between a remote plasma source and a substrate.
    Type: Application
    Filed: September 26, 2014
    Publication date: March 31, 2016
    Inventors: Ivelin Angelov, Serge Kosche
  • Patent number: 8851463
    Abstract: Examples of novel semiconductor processing pedestals, and apparatuses including such pedestals, are described. These pedestals are specifically configured to provide uniform heat transfer to semiconductor substrates and to reduce maintenance complexity and/or frequency. Specifically, a pedestal may include a removable cover positioned over a metal platen of the pedestal. The removable cover is configured to maintain a consistent and uniform temperature profile of its substrate-facing surface even though the platen's upper-surface, which supports the cover and is in thermal communication with the cover, may have a much less uniform temperature profile. The cover may be made from certain ceramic materials and shaped as a thin plate. These materials are resistant to the processing environments and maintain their thermal characteristics over many processing cycles. The cover can be easily removed from the platen and replaced with a new one without a need for major disassembly of the entire apparatus.
    Type: Grant
    Filed: January 8, 2013
    Date of Patent: October 7, 2014
    Assignee: Novellus Systems, Inc.
    Inventors: Ivelin Angelov, Brian Severson, Natan Solomon
  • Publication number: 20130122431
    Abstract: Examples of novel semiconductor processing pedestals, and apparatuses including such pedestals, are described. These pedestals are specifically configured to provide uniform heat transfer to semiconductor substrates and to reduce maintenance complexity and/or frequency. Specifically, a pedestal may include a removable cover positioned over a metal platen of the pedestal. The removable cover is configured to maintain a consistent and uniform temperature profile of its substrate-facing surface even though the platen's upper-surface, which supports the cover and is in thermal communication with the cover, may have a much less uniform temperature profile. The cover may be made from certain ceramic materials and shaped as a thin plate. These materials are resistant to the processing environments and maintain their thermal characteristics over many processing cycles. The cover can be easily removed from the platen and replaced with a new one without a need for major disassembly of the entire apparatus.
    Type: Application
    Filed: January 8, 2013
    Publication date: May 16, 2013
    Inventors: Ivelin Angelov, Brian Severson, Natan Solomon
  • Patent number: 8371567
    Abstract: Examples of novel semiconductor processing pedestals, and apparatuses including such pedestals, are described. These pedestals are specifically configured to provide uniform heat transfer to semiconductor substrates and to reduce maintenance complexity and/or frequency. Specifically, a pedestal may include a removable cover positioned over a metal platen of the pedestal. The removable cover is configured to maintain a consistent and uniform temperature profile of its substrate-facing surface even though the platen's upper-surface, which supports the cover and is in thermal communication with the cover, may have a much less uniform temperature profile. The cover may be made from certain ceramic materials and shaped as a thin plate. These materials are resistant to the processing environments and maintain their thermal characteristics over many processing cycles. The cover can be easily removed from the platen and replaced with a new one without a need for major disassembly of the entire apparatus.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: February 12, 2013
    Assignee: Novellus Systems, Inc.
    Inventors: Ivelin Angelov, Brian Severson, Natan Solomon
  • Publication number: 20120264051
    Abstract: Examples of novel semiconductor processing pedestals, and apparatuses including such pedestals, are described. These pedestals are specifically configured to provide uniform heat transfer to semiconductor substrates and to reduce maintenance complexity and/or frequency. Specifically, a pedestal may include a removable cover positioned over a metal platen of the pedestal. The removable cover is configured to maintain a consistent and uniform temperature profile of its substrate-facing surface even though the platen's upper-surface, which supports the cover and is in thermal communication with the cover, may have a much less uniform temperature profile. The cover may be made from certain ceramic materials and shaped as a thin plate. These materials are resistant to the processing environments and maintain their thermal characteristics over many processing cycles. The cover can be easily removed from the platen and replaced with a new one without a need for major disassembly of the entire apparatus.
    Type: Application
    Filed: April 13, 2011
    Publication date: October 18, 2012
    Applicant: NOVELLUS SYSTEMS, INC.
    Inventors: Ivelin Angelov, Brian Severson, Natan Solomon
  • Publication number: 20120108072
    Abstract: Apparatus, devices, and methods for increasing the ion energy in a plasma processing devices are provided. In various embodiments, the surface area of a showerhead facing the work piece includes a plurality of features. The plurality of features increases the surface area of the showerhead relative to a flat surface. Increasing the surface area of the showerhead increases the ion energy without increasing the power used to generate the plasma. Increasing the ion energy using such a showerhead allows for the broader application of plasma processes in integrated circuit manufacturing.
    Type: Application
    Filed: October 29, 2010
    Publication date: May 3, 2012
    Inventors: Ivelin A. Angelov, James E. Caron, Ilia Kalinovski, Zhao Li
  • Patent number: 7731798
    Abstract: A chuck for supporting a wafer and maintaining a constant background temperature across the wafer during laser thermal processing (LTP) is disclosed. The chuck includes a heat sink and a thermal mass in the form of a heater module. The heater module is in thermal communication with the heat sink, but is physically separated therefrom by a thermal insulator layer. The thermal insulator maintains a substantially constant power loss at least equal to the maximum power delivered by the laser, less that lost by radiation and convection. A top plate is arranged atop the heater module, supports the wafer to be processed, and provides a contamination barrier. The heater module is coupled to a power supply that is adapted to provide varying amounts of power to the heater module to maintain the heater module at the constant background temperature even when the wafer experiences a spatially and temporally varying heat load from an LTP laser beam.
    Type: Grant
    Filed: December 1, 2004
    Date of Patent: June 8, 2010
    Assignee: Ultratech, Inc.
    Inventors: Iqbal A. Shareef, Igor Landau, David A. Markle, Somit Talwar, Michael O. Thompson, Ivelin A. Angelov, Senquan Zhou
  • Publication number: 20100120335
    Abstract: The partial contact wafer retaining ring apparatus is disclosed. For example, one disclosed embodiment provides a wafer retaining ring comprising a ring for retaining the wafer, the ring having an inner diameter surface configured to restrict lateral wafer motion, and at least one interface surface configured to interface with a polishing surface. The interface surface comprises a recessed section adjacent to the ring inner diameter, configured to preclude contact between the recessed section and the polishing surface.
    Type: Application
    Filed: November 7, 2008
    Publication date: May 13, 2010
    Applicant: NOVELLUS SYSTEMS, INC.
    Inventors: Haoquan Fang, Ivelin Angelov, Brian Severson, Benjamin A. Bonner, Serge Kosche, Patrick J. Lord, Brian J. Brown
  • Patent number: 7326877
    Abstract: Chuck methods and apparatus for supporting a semiconductor substrate and maintaining it at a substantially constant background temperature even when subject to a spatially and temporally varying thermal load. Chuck includes a thermal compensating heater module having a sealed chamber containing heater elements, a wick, and an alkali metal liquid/vapor. The chamber employs heat pipe principles to equalize temperature differences in the module. The spatially varying thermal load is quickly made uniform by thermal conductivity of the heater module. Heatsinking a constant amount of heat from the bottom of the heater module accommodates large temporal variations in the thermal heat load. Constant heat loss is preferably made to be at least as large as the maximum variation in the input heat load, less heat lost through radiation and convection, thus requiring a heat input through electrical heating elements. This allows for temperature control of the chuck, and hence the substrate.
    Type: Grant
    Filed: December 1, 2004
    Date of Patent: February 5, 2008
    Assignee: Ultratech, Inc.
    Inventors: Iqbal A. Shareef, Igor Landau, David A. Markle, Somit Talwar, Michael O. Thompson, Ivelin A. Angelov, Senquan Zhou
  • Publication number: 20070004232
    Abstract: Chuck methods and apparatus for supporting a semiconductor substrate and maintaining it at a substantially constant background temperature even when subject to a spatially and temporally varying thermal load. Chuck includes a thermal compensating heater module having a sealed chamber containing heater elements, a wick, and an alkali metal liquid/vapor. The chamber employs heat pipe principles to equalize temperature differences in the module. The spatially varying thermal load is quickly made uniform by thermal conductivity of the heater module. Heatsinking a constant amount of heat from the bottom of the heater module accommodates large temporal variations in the thermal heat load. Constant heat loss is preferably made to be at least as large as the maximum variation in the input heat load, less heat lost through radiation and convection, thus requiring a heat input through electrical heating elements. This allows for temperature control of the chuck, and hence the substrate.
    Type: Application
    Filed: December 1, 2004
    Publication date: January 4, 2007
    Inventors: Iqbal Shareef, Igor Landau, David Markle, Somit Talwar, Michael Thompson, Ivelin Angelov, Senquan Zhou
  • Publication number: 20060113290
    Abstract: A chuck for supporting a wafer and maintaining a constant background temperature across the wafer during laser thermal processing (LTP) is disclosed. The chuck includes a heat sink and a thermal mass in the form of a heater module. The heater module is in thermal communication with the heat sink, but is physically separated therefrom by a thermal insulator layer. The thermal insulator maintains a substantially constant power loss at least equal to the maximum power delivered by the laser, less that lost by radiation and convection. A top plate is arranged atop the heater module, supports the wafer to be processed, and provides a contamination barrier. The heater module is coupled to a power supply that is adapted to provide varying amounts of power to the heater module to maintain the heater module at the constant background temperature even when the wafer experiences a spatially and temporally varying heat load from an LTP laser beam.
    Type: Application
    Filed: December 1, 2004
    Publication date: June 1, 2006
    Inventors: Iqbal Shareef, Igor Landau, David Markle, Somit Talwar, Michael Thompson, Ivelin Angelov, Senquan Zhou
  • Patent number: D641829
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: July 19, 2011
    Assignee: Novellus Systems, Inc.
    Inventors: Ivelin A. Angelov, James E. Caron, Ilia Kalinovshi
  • Patent number: D671901
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: December 4, 2012
    Assignee: Novellus Systems, Inc.
    Inventors: Ivelin Angelov, Brian Severson, Natan Solomon