Patents by Inventor James Guenter

James Guenter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050286593
    Abstract: A monolithically formed laser and photodiode. The monolithically formed laser and photodiode includes a Vertical Cavity Surface Emitting Laser (VCSEL) that includes a first PN junction. The first PN junction includes a first p layer and a first n layer. A tunnel diode is connected to the VCSEL both physically and electronically through a wafer fabrication process. A photodiode is connected to the tunnel diode. The photodiode is connected to the tunnel diode by physical and electronic connections. The tunnel diode and photodiode may share some common layers. The tunnel diode includes a second PN junction. The monolithically formed laser and photodiode allow for an integrated structure with diode biasing flexibility including the use of a single supply to bias both the laser and photodiodes.
    Type: Application
    Filed: June 25, 2004
    Publication date: December 29, 2005
    Inventor: James Guenter
  • Publication number: 20050286587
    Abstract: A vertical cavity surface emitting laser (VCSEL) optimized for use in self mixing applications. The VCSEL generally includes a bottom distributed Bragg reflector (DBR) mirror formed on a substrate. An active region is formed on the bottom mirror. A top DBR mirror is formed on the active region. A trench is formed in the at least the top mirror. An aperture is oxidized into the VCSEL. At least one of the bottom DBR mirror, the top DBR mirror, the metal contacts, the trench, and/or the aperture is optimized to make the VCSEL more thermally sensitive to changes in current through the VCSEL.
    Type: Application
    Filed: March 29, 2005
    Publication date: December 29, 2005
    Inventor: James Guenter
  • Publication number: 20050286589
    Abstract: A vertical cavity surface emitting laser (VCSEL) optimized for use in self mixing applications. The VCSEL generally includes a bottom distributed Bragg reflector (DBR) mirror formed on a substrate. An active region is formed on the bottom mirror. A top DBR mirror is formed on the active region. A trench is formed in the at least the top mirror. An aperture is oxidized into the VCSEL. At least one of the bottom DBR mirror, the top DBR mirror, the metal contacts, the trench, and/or the aperture is optimized to make the VCSEL more optically sensitive to light reflected back into the VCSEL.
    Type: Application
    Filed: April 29, 2005
    Publication date: December 29, 2005
    Inventor: James Guenter
  • Publication number: 20050286588
    Abstract: A vertical cavity surface emitting laser (VCSEL) optimized for use in self mixing applications. The VCSEL generally includes a bottom distributed Bragg reflector (DBR) mirror formed on a substrate. An active region is formed on the bottom mirror. A top DBR mirror is formed on the active region. A trench is formed in the at least the top mirror. An aperture is oxidized into the VCSEL. At least one of the bottom DBR mirror, the top DBR mirror, the metal contacts, the trench, and/or the aperture is optimized to optimize the linewidth enhancement factor for use in self mixing applications.
    Type: Application
    Filed: April 29, 2005
    Publication date: December 29, 2005
    Inventor: James Guenter
  • Publication number: 20050286584
    Abstract: An optical structure that reduces the effects of spontaneous emissions from the active region of a laser. An optical structure includes optimizations to reduce the effects of spontaneous emissions. The optical structure includes a VCSEL with top and bottom DBR mirrors and an active region connected to the mirrors. The optical structure further includes a photodiode connected to the VCSEL. One or more optimizations may be included in the optical structure including optically absorbing materials, varying the geometry of the structure to change reflective angles, using optical apertures, changing the reflectivity of one or more mirrors, changing the photodiode to be more impervious to spontaneous emissions, and using ion implants to reduce photoluminescence efficiency.
    Type: Application
    Filed: December 30, 2004
    Publication date: December 29, 2005
    Inventors: James Guenter, Jimmy Tatum, James Biard
  • Publication number: 20050286583
    Abstract: An optical structure that reduces the effects of spontaneous emissions from the active region of a laser. An optical structure includes optimizations to reduce the effects of spontaneous emissions. The optical structure includes a VCSEL with top and bottom DBR mirrors and an active region connected to the mirrors. The optical structure further includes a photodiode connected to the VCSEL. One or more optimizations may be included in the optical structure including optically absorbing materials, varying the geometry of the structure to change reflective angles, using optical apertures, changing the reflectivity of one or more mirrors, changing the photodiode to be more impervious to spontaneous emissions, and using ion implants to reduce photoluminescence efficiency.
    Type: Application
    Filed: December 30, 2004
    Publication date: December 29, 2005
    Inventors: James Guenter, Jimmy Tatum, James Biard
  • Publication number: 20050286595
    Abstract: An optical structure that reduces the effects of spontaneous emissions from the active region of a laser. An optical structure includes optimizations to reduce the effects of spontaneous emissions. The optical structure includes a VCSEL with top and bottom DBR mirrors and an active region connected to the mirrors. The optical structure further includes a photodiode connected to the VCSEL. One or more optimizations may be included in the optical structure including optically absorbing materials, varying the geometry of the structure to change reflective angles, using optical apertures, changing the reflectivity of one or more mirrors, changing the photodiode to be more impervious to spontaneous emissions, and using ion implants to reduce photoluminescence efficiency.
    Type: Application
    Filed: December 30, 2004
    Publication date: December 29, 2005
    Inventors: James Guenter, Jimmy Tatum, James Biard
  • Publication number: 20050190812
    Abstract: This disclosure concerns devices such as DBRs, one example of which includes at least one first mirror layers having an oxidized region extending from an edge of the DBR to an oxide termination edge that is situated greater than a first distance from the edge of the DBR. The DBR also includes at least one second mirror layer having an oxidized region extending from the edge of the DBR to an oxide termination edge that is situated less than a second distance from the edge of the DBR, such that the first distance is greater than the second distance. Additionally, a first mirror layer includes an oxidizable material at a concentration that is higher than the concentration of the oxidizable material in any of the second mirror layers. Finally, a first mirror layer is doped with an impurity at a higher level than one of the second mirror layers.
    Type: Application
    Filed: April 29, 2005
    Publication date: September 1, 2005
    Inventors: Ralph Johnson, Klein Johnson, Jimmy Tatum, James Guenter, James Biard, Robert Hawthorne
  • Publication number: 20050191053
    Abstract: A controller for optical components. A controller includes mixed signal interface that is configured to connect to an optical component external to the controller. The mixed signal interface is able to deliver and/or receive signals to and/or from the optical component. The controller includes a digital interface that is able to connect to a memory external to the controller. The digital interface may receive a digital representation of operating characteristics of the optical component. The controller is configured to deliver and/or receive signals to and/or from the optical component based on the digital representation of operating characteristics.
    Type: Application
    Filed: April 29, 2005
    Publication date: September 1, 2005
    Inventors: Frank Levinson, James Guenter, Jimmy Tatum
  • Publication number: 20050024076
    Abstract: Systems for wafer level burn-in (WLBI) of semiconductor devices (210, 215) are presented. Systems having at least two electrodes for the application of electrical bias and/or thermal power on each side of a wafer (100) having back (105) and front (110) electrical contacts for semiconductor devices borne by the wafer (100) is described. Methods of wafer level burnin using the system are also described. Furthermore, a pliable conductive layer (220) is described for supplying pins or contacts (110) on device side of a wafer with electrical contact. The pliable conductive layer (220) can allow for an effective series R in each of the devices borne by the wafer (100), thus helping keep voltage bias level consistent. The pliable conductive layer can also prevent damage to a wafer when pressure is applied to it by chamber contacts (210, 215) and pressure onto surfaces of the wafer (100) during burn-in operations.
    Type: Application
    Filed: August 12, 2002
    Publication date: February 3, 2005
    Inventors: Michael Haji-Sheikh, James Biard, Simon Rabinovich, James Guenter, Bobby Hawkins
  • Publication number: 20050018729
    Abstract: Optical transmitters are disclosed, one example of which includes a vertical cavity surface emitting laser that includes a substrate upon which a lower mirror is disposed. In this example, a spacer is disposed between the lower mirror and an active region. Another spacer separates the active region and an upper mirror. The upper mirror includes an oxide insulating region that is damaged by ion implantation so that desirable effects are achieved with respect to lateral sheet resistance, and quantum well recombination centers in the active region.
    Type: Application
    Filed: August 19, 2004
    Publication date: January 27, 2005
    Inventors: James Biard, James Guenter
  • Publication number: 20050013542
    Abstract: A coupler for coupling light between an optoelectronic element and an optical fiber. The coupler has a fiber stop that is made of a material that has an index of refraction that effectively matches the index of refraction of the optical fiber being coupled to the optoelectronic element. The fiber stop may be flat or rounded. It may be a discrete or molded part of the coupler assembly. The end of the fiber being stopped may be flat or rounded.
    Type: Application
    Filed: July 16, 2003
    Publication date: January 20, 2005
    Inventors: Raymond Blasingame, Bo Chen, James Guenter, James Lee, Bernard Li, James Orenstein