Patents by Inventor Jean Fompeyrine

Jean Fompeyrine has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10249492
    Abstract: A semiconductor substrate, comprising a first semiconductor material, is provided and an insulating layer is formed thereon; an opening is formed in the insulating layer. Thereby, a seed surface of the substrate is exposed. The opening has sidewalls and a bottom and the bottom corresponds to the seed surface of the substrate. A cavity structure is formed above the insulating layer, including the opening and a lateral growth channel extending laterally over the substrate. A matching array is grown on the seed surface of the substrate, including at least a first semiconductor matching structure comprising a second semiconductor material and a second semiconductor matching structure comprising a third semiconductor material. The compound semiconductor structure comprising a fourth semiconductor material is grown on a seed surface of the second matching structure. The first through fourth semiconductor materials are different from each other. Corresponding semiconductor structures are also included.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: April 2, 2019
    Assignee: International Business Machines Corporation
    Inventors: Daniele Caimi, Lukas Czornomaz, Jean Fompeyrine, Emanuele Uccelli
  • Patent number: 10228282
    Abstract: An optical sensor includes an interaction region configured to comprise an analyte and an illumination source configured to illuminate the interaction region with an optical input signal. The optical sensor further includes an optical coupling structure configured to collect transmitted parts of the optical input signal from the interaction region and an optical neuromorphic network that is directly optically coupled to the optical coupling structure and is configured to receive and process the transmitted parts of the optical input signal in the optical domain. The invention further concerns a related method for analyzing an analyte by an optical sensor.
    Type: Grant
    Filed: December 30, 2017
    Date of Patent: March 12, 2019
    Assignee: International Business Machines Corporation
    Inventors: Stefan Abel, Jean Fompeyrine, Antonio La Porta
  • Patent number: 10228280
    Abstract: An optical sensor includes an interaction region configured to comprise an analyte and an illumination source configured to illuminate the interaction region with an optical input signal. The optical sensor further includes an optical coupling structure configured to collect transmitted parts of the optical input signal from the interaction region and an optical neuromorphic network that is directly optically coupled to the optical coupling structure and is configured to receive and process the transmitted parts of the optical input signal in the optical domain. The invention further concerns a related method for analyzing an analyte by an optical sensor.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: March 12, 2019
    Assignee: International Business Machines Corporation
    Inventors: Stefan Abel, Jean Fompeyrine, Antonio La Porta
  • Publication number: 20180284834
    Abstract: System and method related to photonic computing are provided. A photonic computing system may include an optical interference region and an input waveguide configured to couple an optical input signal to the optical interference region and to create an optical interference pattern in the optical interference region. The interference pattern has an optical power distribution. The photonic computing system may further include a readout unit that is arranged in an inner area of the optical interference region. The readout unit is configured to detect an optical readout signal of the optical power distribution at a readout position of the inner area of the optical interference region. A method is also provided for performing photonic computing.
    Type: Application
    Filed: April 3, 2017
    Publication date: October 4, 2018
    Inventors: Stefan Abel, Jean Fompeyrine, Bert Jan Offrein, Walter Heinrich Riess
  • Publication number: 20180241176
    Abstract: The present invention is notably directed to an electro-optical device. This device has a layer structure, which comprises a stack of III-V semiconductor gain materials, an n-doped layer and a p-doped layer. The III-V materials are stacked along a stacking direction z, which is perpendicular to a main plane of the stack. The n-doped layer extends essentially parallel to the main plane of the stack, on one side thereof. The p-doped layer too extends essentially parallel to this main plane, but on another side thereof. A median vertical plane can be defined in the layer structure, which plane is parallel to the stacking direction z and perpendicular to the main plane of the stack. Now, the device further comprises two sets of ohmic contacts, wherein the ohmic contacts of each set are configured for vertical current injection in the stack of III-V semiconductor gain materials.
    Type: Application
    Filed: February 22, 2017
    Publication date: August 23, 2018
    Inventors: Stefan Abel, Lukas Czornomaz, Jean Fompeyrine, Utz Herwig Hahn, Folkert Horst, Marc Seifried
  • Publication number: 20180224327
    Abstract: An optical sensor includes an interaction region configured to comprise an analyte and an illumination source configured to illuminate the interaction region with an optical input signal. The optical sensor further includes an optical coupling structure configured to collect transmitted parts of the optical input signal from the interaction region and an optical neuromorphic network that is directly optically coupled to the optical coupling structure and is configured to receive and process the transmitted parts of the optical input signal in the optical domain. The invention further concerns a related method for analyzing an analyte by an optical sensor.
    Type: Application
    Filed: February 9, 2017
    Publication date: August 9, 2018
    Inventors: Stefan Abel, Jean Fompeyrine, Antonio La Porta
  • Publication number: 20180224328
    Abstract: An optical sensor includes an interaction region configured to comprise an analyte and an illumination source configured to illuminate the interaction region with an optical input signal. The optical sensor further includes an optical coupling structure configured to collect transmitted parts of the optical input signal from the interaction region and an optical neuromorphic network that is directly optically coupled to the optical coupling structure and is configured to receive and process the transmitted parts of the optical input signal in the optical domain. The invention further concerns a related method for analyzing an analyte by an optical sensor.
    Type: Application
    Filed: December 30, 2017
    Publication date: August 9, 2018
    Inventors: Stefan Abel, Jean Fompeyrine, Antonio La Porta
  • Patent number: 10007059
    Abstract: A semiconductor structure is provided, the semiconductor structure comprising: a semiconductor substrate processed to comprise at least an optical aspect comprising at least a silicon photonics device and at least an electronic aspect comprising at least an electronic device; at least an interlayer dielectric layer provided on the semiconductor substrate, and at least an electrically interconnecting layer provided on the interlayer dielectric layer, wherein: the semiconductor structure further comprises at least a functional-oxide crystalline layer provided in relation to the interlayer dielectric layer before the interconnecting layer is provided on the interlayer dielectric layer, the functional-oxide crystalline layer comprising at least a functional-oxide material and is processed to comprise at least an active optical device, and the interlayer dielectric layer comprises a first surface and a second surface, the first surface being in common to at least a respective part of the optical aspect and the ele
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: June 26, 2018
    Assignee: International Business Machines Corporation
    Inventors: Stefan Abel, Jean Fompeyrine, Chiara Marchiori
  • Patent number: 9989703
    Abstract: A semiconductor structure and a method for manufacturing the semiconductor structure are provided. The semiconductor structure includes a processed semiconductor substrate. The processed semiconductor substrate includes active electronic components. The semiconductor structure also includes a dielectric layer that covers, at least partially, the processed semiconductor substrate. An interface layer that is suitable for growing optically active material on the interface layer is bonded to the dielectric layer. An optical gain layer and the processed semiconductor substrate are connected through the dielectric layer by electric and/or optical contacts.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: June 5, 2018
    Assignee: International Business Machines Corporation
    Inventors: Lukas Czornomaz, Jean Fompeyrine, Jens Hofrichter, Bert Jan Offrein, Mirja Richter
  • Patent number: 9953125
    Abstract: Embodiments of the present invention may provide the capability to design SRAM cells may be designed that is compatible with the requirements of InGaAs integration by selective epitaxy in SiO2 cavities without sacrificing density and area scaling. In an embodiment of the present invention, a computer-implemented method for designing a hybrid integrated circuit may comprise receiving data representing a layout of a static random-access memory cell array, identifying areas between active channel regions that do not overlap with transistor gates of static random-access memory cells of the static random-access memory cell array, selecting from among the identified areas at least one area, expanding the selected areas to determine whether the expanded area intersects with a p-doped active Si semiconductor or p-channel semiconductor area, and marking as Si seed locations the identified expanded areas that do not intersect on both sides with a channel active transistor region.
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: April 24, 2018
    Assignee: International Business Machines Corporation
    Inventors: Daniele Caimi, Lukas Czornomaz, Veeresh V. Deshpande, Vladimir Djara, Jean Fompeyrine
  • Patent number: 9891112
    Abstract: A radiation detector and method and computer program product for detecting radiation. The detector comprises a waveguide structure, a sensing structure comprising a phase change material, an optical transmitter and optical receiver. The optical transmitter transmits an optical sensing signal for receipt at the optical receiver via the waveguide structure. The phase change material comprises a first phase state at a first temperature range and a second phase state at a second temperature range and transitions from the first phase state to the second phase state under exposure of the radiation. The sensing structure is arranged in an evanescent field area of the waveguide structure and provides for an evanescent field of the optical sensing signal a first complex refractive index in the first phase state and a second complex refractive index in the second phase state. The first complex refractive index is different from the second complex refractive index.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: February 13, 2018
    Assignee: International Business Machines Corporation
    Inventors: Stefan Abel, Lukas Czornomaz, Jean Fompeyrine, Bernd w. Gotsmann, Fabian Menges
  • Patent number: 9881921
    Abstract: A dual gate CMOS structure including a semiconductor substrate; a first channel structure including a first semiconductor material and a second channel structure including a second semiconductor material on the substrate. The first semiconductor material including SixGe1-x where x=0 to 1 and the second semiconductor material including a group III-V compound material. A first gate stack on the first channel structure includes: a first native oxide layer as an interface control layer, the first native oxide layer comprising an oxide of the first semiconductor material; a first high-k dielectric layer; a first metal gate layer. A second gate stack on the second channel structure includes a second high-k dielectric layer; a second metal gate layer. The interface between the second channel structure and the second high-k dielectric layer is free of any native oxides of the second semiconductor material.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: January 30, 2018
    Assignee: International Business Machines Corporation
    Inventors: Lukas Czornomaz, Veeresh Vidyadhar Deshpande, Vladimir Djara, Jean Fompeyrine
  • Patent number: 9864134
    Abstract: A semiconductor structure and a method for manufacturing the semiconductor structure are provided. The semiconductor structure includes a processed semiconductor substrate. The processed semiconductor substrate includes active electronic components. The semiconductor structure also includes a dielectric layer that covers, at least partially, the processed semiconductor substrate. An interface layer that is suitable for growing optically active material on the interface layer is bonded to the dielectric layer. An optical gain layer and the processed semiconductor substrate are connected through the dielectric layer by electric and/or optical contacts.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: January 9, 2018
    Assignee: International Business Machines Corporation
    Inventors: Lukas Czornomaz, Jean Fompeyrine, Jens Hofrichter, Bert Jan Offrein, Mirja Richter
  • Publication number: 20170364623
    Abstract: Embodiments of the present invention may provide the capability to design SRAM cells may be designed that is compatible with the requirements of InGaAs integration by selective epitaxy in SiO2 cavities without sacrificing density and area scaling. In an embodiment of the present invention, a computer-implemented method for designing a hybrid integrated circuit may comprise receiving data representing a layout of a static random-access memory cell array, identifying areas between active channel regions that do not overlap with transistor gates of static random-access memory cells of the static random-access memory cell array, selecting from among the identified areas at least one area, expanding the selected areas to determine whether the expanded area intersects with a p-doped active Si semiconductor or p-channel semiconductor area, and marking as Si seed locations the identified expanded areas that do not intersect on both sides with a channel active transistor region.
    Type: Application
    Filed: June 15, 2016
    Publication date: December 21, 2017
    Inventors: Daniele Caimi, Lukas Czornomaz, Veeresh V. Deshpande, Vladimir Djara, Jean Fompeyrine
  • Publication number: 20170345656
    Abstract: A semiconductor substrate is a provided and an insulating layer is formed thereon. A cavity structure is formed above the insulating layer, including a lateral growth channel and a fin seed structure arranged in the lateral growth channel. The fin seed structure provides a seed surface for growing a fin structure. One or more first semiconductor structures of a first semiconductor material and one or more second semiconductor structures of a second, different, semiconductor material are grown sequentially in the growth channel from the seed surface in an alternating way. The first semiconductor structures provide a seed surface for the second semiconductor structures and the second semiconductor structures provide a seed surface for the first semiconductor structures. The second semiconductor structures are selectively etched, thereby forming the fin structure comprising a plurality of parallel fins of the first semiconductor structures. Corresponding semiconductor structures are also included.
    Type: Application
    Filed: July 15, 2017
    Publication date: November 30, 2017
    Inventors: Daniele Caimi, Lukas Czornomaz, Jean Fompeyrine, Emanuele Uccelli
  • Publication number: 20170345654
    Abstract: A semiconductor substrate, comprising a first semiconductor material, is provided and an insulating layer is formed thereon; an opening is formed in the insulating layer. Thereby, a seed surface of the substrate is exposed. The opening has sidewalls and a bottom and the bottom corresponds to the seed surface of the substrate. A cavity structure is formed above the insulating layer, including the opening and a lateral growth channel extending laterally over the substrate. A matching array is grown on the seed surface of the substrate, including at least a first semiconductor matching structure comprising a second semiconductor material and a second semiconductor matching structure comprising a third semiconductor material. The compound semiconductor structure comprising a fourth semiconductor material is grown on a seed surface of the second matching structure. The first through fourth semiconductor materials are different from each other. Corresponding semiconductor structures are also included.
    Type: Application
    Filed: May 27, 2016
    Publication date: November 30, 2017
    Inventors: Daniele Caimi, Lukas Czornomaz, Jean Fompeyrine, Emanuele Uccelli
  • Patent number: 9805949
    Abstract: A method of forming a high k gate stack on a surface of a III-V compound semiconductor, such GaAs, is provided. The method includes subjecting a III-V compound semiconductor material to a precleaning process which removes native oxides from a surface of the III-V compound semiconductor material; forming a semiconductor, e.g., amorphous Si, layer in-situ on the cleaned surface of the III-V compound semiconductor material; and forming a dielectric material having a dielectric constant that is greater than silicon dioxide on the semiconducting layer. In some embodiments, the semiconducting layer is partially or completely converted into a layer including at least a surface layer that is comprised of AOxNy prior to forming the dielectric material. In accordance with the present invention, A is a semiconducting material, preferably Si, x is 0 to 1, y is 0 to 1 and x and y are both not zero.
    Type: Grant
    Filed: September 9, 2012
    Date of Patent: October 31, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Jean Fompeyrine, Edward W. Kiewra, Steven J. Koester, Devendra K. Sadana, David J. Webb
  • Publication number: 20170294307
    Abstract: The invention relates to a method for fabricating a semiconductor circuit comprising providing a semiconductor substrate; fabricating a first semiconductor device comprising a first semiconductor material on the substrate and forming an insulating layer comprising a cavity structure on the first semiconductor device. The cavity structure comprises at least one growth channel and the growth channel connects a crystalline seed surface of the first semiconductor device with an opening. Further steps include growing via the opening from the seed surface a semiconductor filling structure comprising a second semiconductor material different from the first semiconductor material in the growth channel; forming a semiconductor starting structure for a second semiconductor device from the filling structure; and fabricating a second semiconductor device comprising the starting structure. The invention is notably also directed to corresponding semiconductor circuits.
    Type: Application
    Filed: June 20, 2017
    Publication date: October 12, 2017
    Inventors: Daniele Caimi, Lukas Czornomaz, Veeresh Deshpande, Vladimir Djara, Jean Fompeyrine
  • Patent number: 9786664
    Abstract: A dual gate CMOS structure including a semiconductor substrate; a first channel structure including a first semiconductor material and a second channel structure including a second semiconductor material on the substrate. The first semiconductor material including SixGe1-x where x=0 to 1 and the second semiconductor material including a group III-V compound material. A first gate stack on the first channel structure includes: a first native oxide layer as an interface control layer, the first native oxide layer comprising an oxide of the first semiconductor material; a first high-k dielectric layer; a first metal gate layer. A second gate stack on the second channel structure includes a second high-k dielectric layer; a second metal gate layer. The interface between the second channel structure and the second high-k dielectric layer is free of any native oxides of the second semiconductor material.
    Type: Grant
    Filed: February 10, 2016
    Date of Patent: October 10, 2017
    Assignee: International Business Machines Corporation
    Inventors: Lukas Czornomaz, Veeresh Vidyadhar Deshpande, Vladimir Djara, Jean Fompeyrine
  • Publication number: 20170254950
    Abstract: A semiconductor structure is provided, the semiconductor structure comprising: a semiconductor substrate processed to comprise at least an optical aspect comprising at least a silicon photonics device and at least an electronic aspect comprising at least an electronic device; at least an interlayer dielectric layer provided on the semiconductor substrate, and at least an electrically interconnecting layer provided on the interlayer dielectric layer, wherein: the semiconductor structure further comprises at least a functional-oxide crystalline layer provided in relation to the interlayer dielectric layer before the interconnecting layer is provided on the interlayer dielectric layer, the functional-oxide crystalline layer comprising at least a functional-oxide material and is processed to comprise at least an active optical device, and the interlayer dielectric layer comprises a first surface and a second surface, the first surface being in common to at least a respective part of the optical aspect and the ele
    Type: Application
    Filed: May 23, 2017
    Publication date: September 7, 2017
    Inventors: Stefan Abel, Jean Fompeyrine, Chiara Marchiori