Patents by Inventor Jeffrey A. DeBoer

Jeffrey A. DeBoer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6417559
    Abstract: In one aspect, the invention includes a semiconductor processing method, comprising: a) providing a silicon nitride material having a surface; b) forming a barrier layer over the surface of the material, the barrier layer comprising silicon and nitrogen; and c) forming a photoresist over and against the barrier layer.
    Type: Grant
    Filed: November 27, 2000
    Date of Patent: July 9, 2002
    Assignee: Micron Technology, Inc.
    Inventors: John T. Moore, Scott Jeffrey DeBoer, Mark Fischer, J. Brett Rolfson, Annette L. Martin, Ardavan Niroomand
  • Patent number: 6400552
    Abstract: Capacitors and methods of forming capacitors are disclosed. In one implementation, a capacitor includes a capacitor dielectric layer including Ta2O5 formed over a first capacitor electrode. A second capacitor electrode is formed over the Ta2O5 capacitor dielectric layer. Preferably, at least a portion of the second capacitor electrode is formed over and in contact with the Ta2O5 in an oxygen containing environment at a temperature of at least about 175° C. Chemical vapor deposition is one example forming method. The preferred second capacitor electrode includes a conductive metal oxide. A more preferred second capacitor electrode includes a conductive silicon including layer, over a conductive titanium including layer, over a conductive metal oxide layer. A preferred first capacitor electrode includes a conductively doped Si—Ge alloy. Preferably, a Si3N4 layer is formed over the first capacitor electrode. DRAM cells and methods of forming DRAM cells are disclosed.
    Type: Grant
    Filed: April 30, 2001
    Date of Patent: June 4, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Husam N. Al-Shareef, Scott Jeffrey DeBoer, F. Daniel Gealy, Randhir P. S. Thakur
  • Patent number: 6391710
    Abstract: In one aspect, the invention includes an etching process, comprising: a) providing a first material over a substrate, the first material comprising from about 2% to about 20% carbon (by weight); b) providing a second material over the first material; and c) etching the second material at a faster rate than the first material. In another aspect, the invention includes a capacitor forming method, comprising: a) forming a wordline over a substrate; b) defining a node proximate the wordline; c.) forming an etch stop layer over the wordline, the etch stop layer comprising carbon; d) forming an insulative layer over the etch stop layer; e) etching through the insulative layer to the etch stop layer to form an opening through the insulative layer; and e) forming a capacitor construction comprising a storage node, dielectric layer and second electrode, at least a portion of the capacitor construction being within the opening.
    Type: Grant
    Filed: June 23, 2000
    Date of Patent: May 21, 2002
    Assignee: Micron Technology, Inc.
    Inventors: John T. Moore, Guy T. Blalock, Scott Jeffrey DeBoer
  • Publication number: 20020047142
    Abstract: The invention includes a semiconductor processing method. A first material comprising silicon and nitrogen is formed. A second material is formed over the first material, and the second material comprises silicon and less nitrogen, by atom percent, than the first material. An imagable material is formed on the second material, and patterned. A pattern is then transferred from the patterned imagable material to the first and second materials. The invention also includes a structure comprising a first layer of silicon nitride over a substrate, and a second layer on the first layer. The second layer comprises silicon and is free of nitrogen. The structure further comprises a third layer consisting essentially of imagable material on the second layer.
    Type: Application
    Filed: September 12, 2001
    Publication date: April 25, 2002
    Inventors: Scott Jeffrey DeBoer, John T. Moore
  • Publication number: 20020047202
    Abstract: In one aspect, the invention includes a semiconductor processing method, comprising: a) providing a silicon nitride material having a surface; b) forming a barrier layer over the surface of the material, the barrier layer comprising silicon and nitrogen; and c) forming a photoresist over and against the barrier layer.
    Type: Application
    Filed: November 26, 2001
    Publication date: April 25, 2002
    Inventors: John T. Moore, Scott Jeffrey DeBoer, Mark Fischer, J. Brett Rolfson, Annette L. Martin, Ardavan Niroomand
  • Patent number: 6368962
    Abstract: The invention includes buried bit line memory circuitry, methods of forming buried bit line memory circuitry, and semiconductor processing methods of forming conductive lines. In but one implementation, a semiconductor processing method of forming a conductive line includes forming a silicon comprising region over a substrate. A TiNx comprising layer is deposited over the silicon comprising region, where “x” is greater than 0 and less than 1. The TiNx comprising layer is annealed in a nitrogen containing atmosphere effective to transform at least an outermost portion of the TiNx layer over the silicon comprising region to TiN. After the annealing, an elemental tungsten comprising layer is deposited on the TiN and at least the elemental tungsten comprising layer, the TiN, and any remaining TiNx layer is patterned into conductive line. In one implementation, a method such as the above is utilized in the fabrication of buried bit line memory circuitry.
    Type: Grant
    Filed: April 5, 2001
    Date of Patent: April 9, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Yongjun Jeff Hu, Pai-Hung Pan, Scott Jeffrey DeBoer
  • Patent number: 6337274
    Abstract: The invention includes buried bit line memory circuitry, methods of forming buried bit line memory circuitry, and semiconductor processing methods of forming conductive lines. In but one implementation, a semiconductor processing method of forming a conductive line includes forming a silicon comprising region over a substrate. A TiNx comprising layer is deposited over the silicon comprising region, where “x” is greater than 0 and less than 1. The TiNx comprising layer is annealed in a nitrogen containing atmosphere effective to transform at least an outermost portion of the TiNx layer over the silicon comprising region to TiN. After the annealing, an elemental tungsten comprising layer is deposited on the TiN and at least the elemental tungsten comprising layer, the TiN, and any remaining TiNx layer is patterned into conductive line. In one implementation, a method such as the above is utilized in the fabrication of buried bit line memory circuitry.
    Type: Grant
    Filed: December 6, 1999
    Date of Patent: January 8, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Yongjun Jeff Hu, Pai-Hung Pan, Scott Jeffrey DeBoer
  • Publication number: 20020001897
    Abstract: In one aspect, the invention includes a method of forming a gated semiconductor assembly, comprising: a) forming a silicon nitride layer over and against a floating gate; and b) forming a control gate over the silicon nitride layer. In another aspect, the invention includes a method of forming a gated semiconductor assembly, comprising: a) forming a floating gate layer over a substrate; b) forming a silicon nitride layer over the floating gate layer, the silicon nitride layer comprising a first portion and a second portion elevationally displaced from the first portion, the first portion having a greater stoichiometric amount of silicon than the second portion; and c) forming a control gate over the silicon nitride layer.
    Type: Application
    Filed: April 7, 1998
    Publication date: January 3, 2002
    Inventors: MARK A. HELM, MARK FISCHER, JOHN T. MOORE, SCOTT JEFFREY DEBOER
  • Publication number: 20010053057
    Abstract: Capacitors and methods of forming capacitors are disclosed. In one implementation, a capacitor comprises a capacitor dielectric layer comprising Ta2O5 formed over a first capacitor electrode. A second capacitor electrode is formed over the Ta2O5 capacitor dielectric layer. Preferably, at least a portion of the second capacitor electrode is formed over and in contact with the Ta2O5 in an oxygen containing environment at a temperature of at least about 175° C. Chemical vapor deposition is one example forming method. The preferred second capacitor electrode comprises a conductive metal oxide. A more preferred second capacitor electrode comprises a conductive silicon comprising layer, over a conductive titanium comprising layer, over a conductive metal oxide layer. A preferred first capacitor electrode comprises a conductively doped Si—Ge alloy. Preferably, a Si3N4 layer is formed over the first capacitor electrode. DRAM cells and methods of forming DRAM cells are disclosed.
    Type: Application
    Filed: April 30, 2001
    Publication date: December 20, 2001
    Inventors: Husam N. Al-Shareef, Scott Jeffrey DeBoer, F. Daniel Gealy, Randhir P. S. Thakur
  • Patent number: 6326321
    Abstract: In one aspect, the invention includes a semiconductor fabrication process, comprising: a) providing a substrate; b) forming a layer of silicon nitride over the substrate, the layer having a thickness; and c) enriching a portion of the thickness of the silicon nitride layer with silicon, the portion comprising less than or equal to about 95% of the thickness of the layer of silicon nitride. In another aspect, the invention includes a semiconductor fabrication process, comprising: a) providing a substrate; b) forming a layer of silicon nitride over the substrate, the layer having a thickness; and c) increasing a refractive index of a first portion of the thickness of the silicon nitride layer relative to a refractive index of a second portion of the silicon nitride layer, the first portion comprising less than or equal to about 95% of the thickness of the silicon nitride layer.
    Type: Grant
    Filed: June 27, 2000
    Date of Patent: December 4, 2001
    Assignee: Micron Technology, Inc.
    Inventors: Scott Jeffrey DeBoer, John T. Moore, Mark Fischer, Randhir P. S. Thakur
  • Patent number: 6323139
    Abstract: In one aspect, the invention includes a semiconductor processing method, comprising: a) providing a silicon nitride material having a surface; b) forming a barrier layer over the surface of the material, the barrier layer comprising silicon and nitrogen; and c) forming a photoresist over and against the barrier layer.
    Type: Grant
    Filed: December 7, 1999
    Date of Patent: November 27, 2001
    Assignee: Micron Technology, Inc.
    Inventors: John T. Moore, Scott Jeffrey DeBoer, Mark Fischer, J. Brett Rolfson, Annette L. Martin, Ardavan Niroomand
  • Publication number: 20010044218
    Abstract: In one aspect, the invention includes a semiconductor processing method, comprising: a) providing a silicon nitride material having a surface; b) forming a barrier layer over the surface of the material, the barrier layer comprising silicon and nitrogen; and c) forming a photoresist over and against the barrier layer.
    Type: Application
    Filed: December 7, 1999
    Publication date: November 22, 2001
    Inventors: JOHN T. MOORE, SCOTT JEFFREY DEBOER, MARK FISCHER, J. BRETT ROLFSON, ANNETTE L. MARTIN, ARDAVAN NIROOMAND
  • Publication number: 20010042884
    Abstract: In one aspect, the invention includes a method of forming a gated semiconductor assembly, comprising: a) forming a silicon nitride layer over and against a floating gate; and b) forming a control gate over the silicon nitride layer. In another aspect, the invention includes a method of forming a gated semiconductor assembly, comprising: a) forming a floating gate layer over a substrate; b) forming a silicon nitride layer over the floating gate layer, the silicon nitride layer comprising a first portion and a second portion elevationally displaced from the first portion, the first portion having a greater stoichiometric amount of silicon than the second portion; and c) forming a control gate over the silicon nitride layer.
    Type: Application
    Filed: November 10, 1999
    Publication date: November 22, 2001
    Inventors: MARK A. HELM, MARK FISCHER, JOHN T. MOORE, SCOTT JEFFREY DEBOER
  • Patent number: 6316372
    Abstract: In one aspect, the invention includes a semiconductor fabrication process, comprising: a) providing a substrate; b) forming a layer of silicon nitride over the substrate, the layer having a thickness; and c) enriching a portion of the thickness of the silicon nitride layer with silicon, the portion comprising less than or equal to about 95% of the thickness of the layer of silicon nitride. In another aspect, the invention includes a semiconductor fabrication process, comprising: a) providing a substrate; b) forming a layer of silicon nitride over the substrate, the layer having a thickness; and c) increasing a refractive index of a first portion of the thickness of the silicon nitride layer relative to a refractive index of a second portion of the silicon nitride layer, the first portion comprising less than or equal to about 95% of the thickness of the silicon nitride layer.
    Type: Grant
    Filed: April 7, 1998
    Date of Patent: November 13, 2001
    Assignee: Micron Technology, Inc.
    Inventors: Scott Jeffrey DeBoer, John T. Moore, Randhir P. S. Thakur, Mark Fischer
  • Publication number: 20010034129
    Abstract: In one aspect, the invention includes an etching process, comprising: a) providing a first material over a substrate, the first material comprising from about 2% to about 20% carbon (by weight); b) providing a second material over the first material; and c) etching the second material at a faster rate than the first material. In another aspect, the invention includes a capacitor forming method, comprising: a) forming a wordline over a substrate; b) defining a node proximate the wordline; c) forming an etch stop layer over the wordline, the etch stop layer comprising carbon; d) forming an insulative layer over the etch stop layer; e) etching through the insulative layer to the etch stop layer to form an opening through the insulative layer; and e) forming a capacitor construction comprising a storage node, dielectric layer and second electrode, at least a portion of the capacitor construction being within the opening.
    Type: Application
    Filed: May 15, 2001
    Publication date: October 25, 2001
    Inventors: John T. Moore, Guy T. Blalock, Scott Jeffrey DeBoer
  • Publication number: 20010021579
    Abstract: The invention includes buried bit line memory circuitry, methods of forming buried bit line memory circuitry, and semiconductor processing methods of forming conductive lines. In but one implementation, a semiconductor processing method of forming a conductive line includes forming a silicon comprising region over a substrate. A TiNx comprising layer is deposited over the silicon comprising region, where “x” is greater than 0 and less than 1. The TiNx comprising layer is annealed in a nitrogen containing atmosphere effective to transform at least an outermost portion of the TiNx layer over the silicon comprising region to TiN. After the annealing, an elemental tungsten comprising layer is deposited on the TiN and at least the elemental tungsten comprising layer, the TiN, and any remaining TiNx layer is patterned into conductive line. In one implementation, a method such as the above is utilized in the fabrication of buried bit line memory circuitry.
    Type: Application
    Filed: April 5, 2001
    Publication date: September 13, 2001
    Inventors: Yongjun Jeff Hu, Pai-Hung Pan, Scott Jeffrey DeBoer
  • Patent number: 6282080
    Abstract: The invention pertains to semiconductor circuit components and capacitors. In another aspect, the invention includes a capacitor including: a) a first capacitor plate; b) a first tantalum-comprising layer over the first capacitor plate; c) a second tantalum-comprising layer over the first tantalum-comprising layer, the second tantalum-comprising layer having nitrogen; and d) a second capacitor plate over the second tantalum-comprising layer. In another aspect, the invention includes a component having: a) a first tantalum-comprising layer; and b) a second tantalum-comprising layer over the first tantalum-comprising layer, the second tantalum-comprising layer having nitrogen.
    Type: Grant
    Filed: January 13, 1999
    Date of Patent: August 28, 2001
    Assignee: Micron Technology, Inc.
    Inventors: Scott Jeffrey DeBoer, F. Daniel Gealy, Randhir P. S. Thakur
  • Publication number: 20010011740
    Abstract: A capacitor has a tantalum oxynitride film. One method for making the film comprises forming a bottom plate electrode and then forming a tantalum oxide film on the bottom plate electrode. Nitrogen is introduced to form a tantalum oxynitride film. A top plate electrode is formed on the tantalum oxynitride film.
    Type: Application
    Filed: February 26, 1998
    Publication date: August 9, 2001
    Inventors: SCOTT JEFFREY DEBOER, HUSAM N. AL-SHAREEF, RANDHIR P.S. THAKUR, DAN GEALY
  • Patent number: 6251802
    Abstract: In one aspect, the invention includes an etching process, comprising: a) providing a first material over a substrate, the first material comprising from about 2% to about 20% carbon (by weight); b) providing a second material over the first material; and c) etching the second material at a faster rate than the first material. In another aspect, the invention includes a capacitor forming method, comprising: a) forming a wordline over a substrate; b) defining a node proximate the wordline; c) forming an etch stop layer over the wordline, the etch stop layer comprising carbon; d) forming an insulative layer over the etch stop layer; e) etching through the insulative layer to the etch stop layer to form an opening through the insulative layer; and e) forming a capacitor construction comprising a storage node, dielectric layer and second electrode, at least a portion of the capacitor construction being within the opening.
    Type: Grant
    Filed: October 19, 1998
    Date of Patent: June 26, 2001
    Assignee: Micron Technology, Inc.
    Inventors: John T. Moore, Guy T. Blalock, Scott Jeffrey DeBoer
  • Patent number: 6251720
    Abstract: A high dielectric constant (HDC) capacitive dielectric film is fabricated in a capacitor structure using relatively high pressure surface treatments. After forming the HDC capacitive dielectric film on a supporting bottom plate electrode structure, a surface treatment comprising oxidation, at a pressure of at least approximately one atmosphere and temperatures of approximately at least 200 degrees Celsius densifies/conditions the HDC capacitive dielectric film. When using a polysilicon, crystalline silicon, hemispherical grain polysilicon, germanium, or silicon-germanium bottom plate electrode, a relatively high pressure surface treatment, comprising rapid thermal nitridation or oxidation, is used after forming the bottom plate electrode, forming a diffusion barrier layer in a controlled manner.
    Type: Grant
    Filed: September 27, 1996
    Date of Patent: June 26, 2001
    Inventors: Randhir P. S. Thakur, Scott Jeffrey DeBoer