Patents by Inventor Jeffrey W. Sleight

Jeffrey W. Sleight has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9922830
    Abstract: Techniques for forming dual III-V semiconductor channel materials to enable fabrication of different device types on the same chip/wafer are provided. In one aspect, a method of forming dual III-V semiconductor channel materials on a wafer includes the steps of: providing a wafer having a first III-V semiconductor layer on an oxide; forming a second III-V semiconductor layer on top of the first III-V semiconductor layer, wherein the second III-V semiconductor layer comprises a different material with an electron affinity that is less than an electron affinity of the first III-V semiconductor layer; converting the first III-V semiconductor layer in at least one second active area to an insulator using ion implantation; and removing the second III-V semiconductor layer from at least one first active area selective to the first III-V semiconductor layer.
    Type: Grant
    Filed: April 7, 2014
    Date of Patent: March 20, 2018
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Isaac Lauer, Amlan Majumdar, Jeffrey W. Sleight
  • Patent number: 9922942
    Abstract: A nanowire device includes a first component formed on a substrate and a second component disposed apart from the first component on the substrate. A nanowire is configured to connect the first component to the second component. An anchor pad is formed along a span of the nanowire and configured to support the nanowire along the span to prevent sagging.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: March 20, 2018
    Assignee: International Business Machines Corporation
    Inventors: Karthik Balakrishnan, Isaac Lauer, Tenko Yamashita, Jeffrey W. Sleight
  • Patent number: 9917057
    Abstract: In one aspect, a method of forming a wiring layer on a wafer is provided which includes: depositing a HSQ layer onto the wafer; cross-linking a first portion(s) of the HSQ layer using e-beam lithography; depositing a hardmask material onto the HSQ layer; patterning the hardmask using optical lithography, wherein the patterned hardmask covers a second portion(s) of the HSQ layer; patterning the HSQ layer using the patterned hardmask in a manner such that i) the first portion(s) of the HSQ layer remain and ii) the second portion(s) of the HSQ layer covered by the patterned hardmask remain, wherein by way of the patterning step trenches are formed in the HSQ layer; and filling the trenches with a conductive material to form the wiring layer on the wafer.
    Type: Grant
    Filed: November 28, 2016
    Date of Patent: March 13, 2018
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Szu-Lin Cheng, Isaac Lauer, Jeffrey W. Sleight
  • Publication number: 20180040800
    Abstract: Various embodiments are directed toward a circuit configured to act as a Josephson junction. The circuit includes: a junction stack on a substrate, the junction stack including a portion of a first superconductor electrode, with an interface layer on a top side of the first superconductor electrode and configured to act as a tunneling barrier for the junction stack. The circuit may also comprise a first portion of a second superconductor electrode on top of the interface layer. A spacer may separate the portion of the first superconductor electrode in the junction stack from a second portion of the second superconductor electrode outside the junction stack where the second superconductor electrode overlays the first superconductor electrode, the second portion of the second superconductor electrode contacting the substrate on at least one side of the spacer.
    Type: Application
    Filed: October 18, 2017
    Publication date: February 8, 2018
    Inventors: Josephine B. Chang, Michael A. Guillorn, Ryan M. Martin, Jeffrey W. Sleight
  • Patent number: 9859375
    Abstract: A method of making a field-effect transistor device includes providing a substrate with a fin stack having: a first sacrificial material layer on the substrate, a first semiconductive material layer on the first sacrificial material layer, and a second sacrificial material layer on the first semiconductive material layer. The method includes inserting a dummy gate having a second thickness, a dummy void, and an outer end that is coplanar to the second face. The method includes inserting a first spacer having a first thickness and a first void, and having an outer end that is coplanar to the first face. The method includes etching the first sacrificial material layer in the second plane and the second sacrificial material layer in the fourth plane. The method includes removing, at least partially, the first spacer. The method also includes inserting a second spacer having the first thickness.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: January 2, 2018
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Michael A. Guillorn, Gen P. Lauer, Isaac Lauer, Jeffrey W. Sleight
  • Patent number: 9859430
    Abstract: A semiconductor wafer is provided, where the semiconductor wafer includes a semiconductor substrate and a hard mask layer formed on the semiconductor substrate. Fins are formed in the semiconductor substrate and the hard mask layer. A spacer is formed on an exposed sidewall of the hard mask layer and the semiconductor substrate. The exposed portion of the semiconductor substrate is etched. A silicon-germanium layer is epitaxially formed on the exposed portions of the semiconductor substrate. An annealed silicon-germanium region is formed by a thermal annealing process within the semiconductor substrate adjacent to the silicon-germanium layer. The silicon-germanium region and the silicon-germanium layer are removed. The hard mask layer and the spacer are removed.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: January 2, 2018
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Leland Chang, Isaac Lauer, Jeffrey W. Sleight
  • Patent number: 9812370
    Abstract: In one aspect, a method of fabricating a bipolar transistor device on a wafer includes the following steps. A dummy gate is formed on the wafer, wherein the dummy gate is present over a portion of the wafer that serves as a base of the bipolar transistor. The wafer is doped to form emitter and collector regions on both sides of the dummy gate. A dielectric filler layer is deposited onto the wafer surrounding the dummy gate. The dummy gate is removed selective to the dielectric filler layer, thereby exposing the base. The base is recessed. The base is re-grown from an epitaxial material selected from the group consisting of: SiGe, Ge, and a III-V material. Contacts are formed to the base. Techniques for co-fabricating a bipolar transistor and CMOS FET devices are also provided.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: November 7, 2017
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Gen P. Lauer, Isaac Lauer, Jeffrey W. Sleight
  • Publication number: 20170263707
    Abstract: After forming a buried nanowire segment surrounded by a gate structure located on a substrate, an epitaxial source region is grown on a first end of the buried nanowire segment while covering a second end of the buried nanowire segment and the gate structure followed by growing an epitaxial drain region on the second end of the buried nanowire segment while covering the epitaxial source region and the gate structure. The epitaxial source region includes a first semiconductor material and dopants of a first conductivity type, while the epitaxial drain region includes a first semiconductor material different from the first semiconductor material and dopants of a second conductivity type opposite the first conductivity type.
    Type: Application
    Filed: May 22, 2017
    Publication date: September 14, 2017
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Siddarth A. Krishnan, Unoh Kwon, Vijay Narayanan, Jeffrey W. Sleight
  • Patent number: 9754965
    Abstract: In one aspect, a method of forming a CMOS device includes forming nanowires suspended over a BOX, wherein a first/second one or more of the nanowires are suspended at a first/second suspension height over the BOX, and wherein the first suspension height is greater than the second suspension height; depositing a conformal gate dielectric on the BOX and around the nanowires wherein the conformal gate dielectric deposited on the BOX is i) in a non-contact position with the conformal gate dielectric deposited around the first one or more of the nanowires, and ii) is in direct physical contact with the conformal gate dielectric deposited around the second one or more of the nanowires such that the BOX serves as an oxygen source during growth of a conformal oxide layer at the interface between the conformal gate dielectric and the second one or more of the nanowires.
    Type: Grant
    Filed: November 15, 2016
    Date of Patent: September 5, 2017
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Michael A. Guillorn, Isaac Lauer, Jeffrey W. Sleight
  • Publication number: 20170236944
    Abstract: A nanowire device includes a first component formed on a substrate and a second component disposed apart from the first component on the substrate. A nanowire is configured to connect the first component to the second component. An anchor pad is formed along a span of the nanowire and configured to support the nanowire along the span to prevent sagging.
    Type: Application
    Filed: May 4, 2017
    Publication date: August 17, 2017
    Inventors: Karthik Balakrishnan, Isaac Lauer, Tenko Yamashita, Jeffrey W. Sleight
  • Patent number: 9728619
    Abstract: A method of modifying a wafer having a semiconductor disposed on an insulator is provided and includes forming pairs of semiconductor pads connected via respective nanowire channels at each of first and second regions with different initial semiconductor thicknesses and reshaping the nanowire channels into nanowires to each have a respective differing thickness reflective of the different initial semiconductor thicknesses.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: August 8, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Sarunya Bangsaruntip, Guy M. Cohen, Jeffrey W. Sleight
  • Patent number: 9728624
    Abstract: A method for fabricating a test structure on a wafer includes forming a fin on a substrate, forming a first gate stack over the fin, the first gate stack having a first gate width, the first gate stack including a gate dielectric layer having a first thickness, forming a second gate stack over the fin, the second gate stack having a second gate width, the second gate stack including a gate dielectric layer having a second thickness, and forming a third gate stack over the fin, the third gate stack having a third gate width, the third gate stack including a gate dielectric layer having the second thickness, wherein the first gate stack is arranged a first distance from the second gate stack and the second gate stack is arranged the first distance from the third gate stack.
    Type: Grant
    Filed: October 28, 2015
    Date of Patent: August 8, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Josephine B. Chang, Isaac Lauer, Jeffrey W. Sleight, Tenko Yamashita
  • Publication number: 20170194509
    Abstract: A nanowire field effect transistor (FET) device includes a first source/drain region and a second source/drain region. Each of the first and second source/drain regions are formed on an upper surface of a bulk semiconductor substrate. A gate region is interposed between the first and second source/drain regions, and directly on the upper surface of the bulk semiconductor substrate. A plurality of nanowires are formed only in the gate region. The nanowires are suspended above the semiconductor substrate and define gate channels of the nanowire FET device. A gate structure includes a gate electrode formed in the gate region such that the gate electrode contacts an entire surface of each nanowire.
    Type: Application
    Filed: June 13, 2016
    Publication date: July 6, 2017
    Inventors: Josephine B. Chang, Michael A. Guillorn, Isaac Lauer, Jeffrey W. Sleight
  • Patent number: 9691715
    Abstract: A nanowire device includes a first component formed on a substrate and a second component disposed apart from the first component on the substrate. A nanowire is configured to connect the first component to the second component. An anchor pad is formed along a span of the nanowire and configured to support the nanowire along the span to prevent sagging.
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: June 27, 2017
    Assignee: International Business Machines Corporation
    Inventors: Karthik Balakrishnan, Isaac Lauer, Tenko Yamashita, Jeffrey W. Sleight
  • Patent number: 9684753
    Abstract: In one aspect, a CAD-based method for designing a lithographic mask for nanowire-based devices is provided which includes the steps of: create a design for the mask from existing (e.g., FINFET or planar CMOS) design data which includes, for each of the devices, one or more nanowire mask shapes (FINFET design data) or continuous shapes (planar CMOS design data); for FINFET design data, merging the nanowire mask shapes into continuous shapes; expanding the continuous shapes to join all of the continuous shapes in the design together forming a single polygon shape; removing the continuous shapes from the single polygon shape resulting in landing pad shapes for anchoring the nanowire mask shapes; for CMOS design data, dividing the continuous active shapes into one or more nanowire mask shapes; and merging the landing pad shapes with the nanowire mask shapes to form the lithographic mask.
    Type: Grant
    Filed: June 9, 2014
    Date of Patent: June 20, 2017
    Assignee: International Business Machines Corporation
    Inventors: Karthik Balakrishnan, Josephine B. Chang, Michael A. Guillorn, Jeffrey W. Sleight
  • Publication number: 20170154959
    Abstract: A nanowire device includes a first component formed on a substrate and a second component disposed apart from the first component on the substrate. A nanowire is configured to connect the first component to the second component. An anchor pad is formed along a span of the nanowire and configured to support the nanowire along the span to prevent sagging.
    Type: Application
    Filed: January 9, 2017
    Publication date: June 1, 2017
    Inventors: Karthik Balakrishnan, Isaac Lauer, Tenko Yamashita, Jeffrey W. Sleight
  • Patent number: 9660027
    Abstract: After forming a buried nanowire segment surrounded by a gate structure located on a substrate, an epitaxial source region is grown on a first end of the buried nanowire segment while covering a second end of the buried nanowire segment and the gate structure followed by growing an epitaxial drain region on the second end of the buried nanowire segment while covering the epitaxial source region and the gate structure. The epitaxial source region includes a first semiconductor material and dopants of a first conductivity type, while the epitaxial drain region includes a first semiconductor material different from the first semiconductor material and dopants of a second conductivity type opposite the first conductivity type.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: May 23, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Siddarth A. Krishnan, Unoh Kwon, Vijay Narayanan, Jeffrey W. Sleight
  • Publication number: 20170125550
    Abstract: A method for fabricating a test structure on a wafer includes forming a fin on a substrate, forming a first gate stack over the fin, the first gate stack having a first gate width, the first gate stack including a gate dielectric layer having a first thickness, forming a second gate stack over the fin, the second gate stack having a second gate width, the second gate stack including a gate dielectric layer having a second thickness, and forming a third gate stack over the fin, the third gate stack having a third gate width, the third gate stack including a gate dielectric layer having the second thickness, wherein the first gate stack is arranged a first distance from the second gate stack and the second gate stack is arranged the first distance from the third gate stack.
    Type: Application
    Filed: October 28, 2015
    Publication date: May 4, 2017
    Inventors: Josephine B. Chang, Isaac Lauer, Jeffrey W. Sleight, Tenko Yamashita
  • Publication number: 20170110539
    Abstract: After forming a buried nanowire segment surrounded by a gate structure located on a substrate, an epitaxial source region is grown on a first end of the buried nanowire segment while covering a second end of the buried nanowire segment and the gate structure followed by growing an epitaxial drain region on the second end of the buried nanowire segment while covering the epitaxial source region and the gate structure. The epitaxial source region includes a first semiconductor material and dopants of a first conductivity type, while the epitaxial drain region includes a first semiconductor material different from the first semiconductor material and dopants of a second conductivity type opposite the first conductivity type.
    Type: Application
    Filed: October 20, 2015
    Publication date: April 20, 2017
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Siddarth A. Krishnan, Unoh Kwon, Vijay Narayanan, Jeffrey W. Sleight
  • Patent number: 9627330
    Abstract: A nanowire device includes a first component formed on a substrate and a second component disposed apart from the first component on the substrate. A nanowire is configured to connect the first component to the second component. An anchor pad is formed along a span of the nanowire and configured to support the nanowire along the span to prevent sagging.
    Type: Grant
    Filed: July 13, 2015
    Date of Patent: April 18, 2017
    Assignee: International Business Machines Corporation
    Inventors: Karthik Balakrishnan, Isaac Lauer, Tenko Yamashita, Jeffrey W. Sleight