Patents by Inventor Jeffrey W. Sleight

Jeffrey W. Sleight has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9530860
    Abstract: Techniques for controlling short channel effects in III-V MOSFETs through the use of a halo-doped bottom (III-V) barrier layer are provided. In one aspect, a method of forming a MOSFET device is provided. The method includes the steps of: forming a III-V barrier layer on a substrate; forming a III-V channel layer on a side of the III-V barrier layer opposite the substrate, wherein the III-V barrier layer is configured to confine charge carriers in the MOSFET device to the III-V channel layer; forming a gate stack on a side of the III-V channel layer opposite the III-V barrier layer; and forming halo implants in the III-V barrier layer on opposite sides of the gate stack. A MOSFET device is also provided.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: December 27, 2016
    Assignee: Globalfoundries, Inc.
    Inventors: Pranita Kerber, Chung-Hsun Lin, Amlan Majumdar, Jeffrey W. Sleight
  • Publication number: 20160359011
    Abstract: In one aspect, a method of forming a CMOS device with multiple transistors having different Vt's is provided which includes: forming nanowires and pads on a wafer, wherein the nanowires are suspended at varying heights above an oxide layer of the wafer; and forming gate stacks of the transistors at least partially surrounding portions of each of the nanowires by: i) depositing a conformal gate dielectric around the nanowires and on the wafer beneath the nanowires; ii) depositing a conformal workfunction metal on the conformal gate dielectric around the nanowires and on the wafer beneath the nanowires, wherein an amount of the conformal workfunction metal deposited around the nanowires is varied based on the varying heights at which the nanowires are suspended over the oxide layer; and iii) depositing a conformal poly-silicon layer on the conformal workfunction metal around the nanowires and on the wafer beneath the nanowires.
    Type: Application
    Filed: August 22, 2016
    Publication date: December 8, 2016
    Inventors: Josephine B. Chang, Michael A. Guillorn, Isaac Lauer, Jeffrey W. Sleight
  • Patent number: 9514937
    Abstract: Non-planar semiconductor devices including at least one semiconductor nanowire having a tapered profile which widens from the source side of the device towards the drain side of the device are provided which have reduced gate to drain coupling and therefore reduced gate induced drain tunneling currents.
    Type: Grant
    Filed: September 4, 2014
    Date of Patent: December 6, 2016
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey W. Sleight, Sarunya Bangsaruntip
  • Patent number: 9496338
    Abstract: A nanowire field effect transistor (FET) device includes a first source/drain region and a second source/drain region. Each of the first and second source/drain regions are formed on an upper surface of a bulk semiconductor substrate. A gate region is interposed between the first and second source/drain regions, and directly on the upper surface of the bulk semiconductor substrate. A plurality of nanowires are formed only in the gate region. The nanowires are suspended above the semiconductor substrate and define gate channels of the nanowire FET device. A gate structure includes a gate electrode formed in the gate region such that the gate electrode contacts an entire surface of each nanowire.
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: November 15, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Josephine B. Chang, Michael A. Guillorn, Isaac Lauer, Jeffrey W. Sleight
  • Patent number: 9496184
    Abstract: In one aspect, a method of fabricating a bipolar transistor device on a wafer includes the following steps. A dummy gate is formed on the wafer, wherein the dummy gate is present over a portion of the wafer that serves as a base of the bipolar transistor. The wafer is doped to form emitter and collector regions on both sides of the dummy gate. A dielectric filler layer is deposited onto the wafer surrounding the dummy gate. The dummy gate is removed selective to the dielectric filler layer, thereby exposing the base. The base is recessed. The base is re-grown from an epitaxial material selected from the group consisting of: SiGe, Ge, and a III-V material. Contacts are formed to the base. Techniques for co-fabricating a bipolar transistor and CMOS FET devices are also provided.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: November 15, 2016
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Gen P. Lauer, Isaac Lauer, Jeffrey W. Sleight
  • Patent number: 9483592
    Abstract: A computer-implemented method for maintaining stress in an integrated circuit having fin-type field-effect transistor devices includes selecting, by a processor of a computer system, a representation of an initial layout design for the integrated circuit, the layout design having design shapes including existing fin shapes; adding, by the processor of the computer system, a fin shape to one or more of the existing fin shapes to merge the one or more existing fin shapes with another existing fin shape to form an extended fin shape; adding, by the processor of the computer system, gate contacts to gates which intersect the added fin shape to generate a modified layout design; and saving the modified layout design to a memory communicatively coupled to the processor of the computer system, where device operation of the initial layout design for the integrated circuit is maintained in the modified layout design for the integrated circuit.
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: November 1, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Karthik Balakrishnan, Pouya Hashemi, Jeffrey W. Sleight, Tenko Yamashita
  • Publication number: 20160308025
    Abstract: A semiconductor structure includes a substrate and an intrinsic replacement channel. A tunneling field effect transistor (TFET) fin may be formed by the intrinsic replacement channel, a p-fin and an n-fin formed upon the substrate. The p-fin may serve as the source of the TFET and the n-fin may serve as the drain of the TFET. The replacement channel may be formed in place of a sacrificial channel of a diode fin that includes the p-fin, the n-fin, and the sacrificial channel at the p-fin and n-fin junction.
    Type: Application
    Filed: April 14, 2015
    Publication date: October 20, 2016
    Inventors: Michael P. Chudzik, Siddarth A. Krishnan, Unoh Kwon, Vijay Narayanan, Jeffrey W. Sleight
  • Patent number: 9472658
    Abstract: A method for fabricating a III-V nanowire. The method may include providing a semiconductor substrate, which includes an insulator, with a wide-bandgap layer on the top surface of the semiconductor substrate; etching the insulator to suspend the wide-bandgap layer; growing a compositionally-graded channel shell over the wide-bandgap layer; forming a gate structure forming spacers on the sidewalls of the gate structure; and forming a doped raised source drain region adjacent to the spacers.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: October 18, 2016
    Assignee: International Business Machines Corporation
    Inventors: Anirban Basu, Guy M. Cohen, Amlan Majumdar, Jeffrey W. Sleight
  • Patent number: 9466673
    Abstract: A silicon germanium on insulator (SGOI) wafer having nFET and pFET regions is accessed, the SGOI wafer having a silicon germanium (SiGe) layer having a first germanium (Ge) concentration, and a first oxide layer over nFET and pFET and removing the first oxide layer over the pFET. Then, increasing the first Ge concentration in the SiGe layer in the pFET to a second Ge concentration and removing the first oxide layer over the nFET. Then, recessing the SiGe layer of the first Ge concentration in the nFET so that the SiGe layer is in plane with the SiGe layer in the pFET of the second Ge concentration. Then, growing a silicon (Si) layer over the SGOI in the nFET and a SiGe layer of a third concentration in the pFET, where the SiGe layer of a third concentration is in plane with the grown nFET Si layer.
    Type: Grant
    Filed: March 22, 2016
    Date of Patent: October 11, 2016
    Assignee: International Business Machines Corporation
    Inventors: Gen P. Lauer, Isaac Lauer, Alexander Reznicek, Jeffrey W. Sleight
  • Publication number: 20160293610
    Abstract: A semiconductor device including a pFET and an nFET where: (i) the gate and conductor channel of the pFET are electrically insulated from a buried oxide layer; and (ii) the conductor channel of the nFET is in the form of a fin extending upwards from, and in electrical contact with, the buried oxide layer. Also, a method of making the pFET by adding a fin structure extending from the top surface of the buried oxide layer, then condensing germanium locally into the lattice structure of the lower portion of the fin structure, and then etching away the lower portion of the fin structure so that it becomes a carrier channel suspended above, and electrically insulated from the buried oxide layer.
    Type: Application
    Filed: March 30, 2015
    Publication date: October 6, 2016
    Inventors: Josephine B. Chang, Leland Chang, Isaac Lauer, Jeffrey W. Sleight
  • Publication number: 20160284810
    Abstract: In one aspect, a method of forming a CMOS device with multiple transistors having different Vt's is provided which includes: forming nanowires and pads on a wafer, wherein the nanowires are suspended at varying heights above an oxide layer of the wafer; and forming gate stacks of the transistors at least partially surrounding portions of each of the nanowires by: i) depositing a conformal gate dielectric around the nanowires and on the wafer beneath the nanowires; ii) depositing a conformal workfunction metal on the conformal gate dielectric around the nanowires and on the wafer beneath the nanowires, wherein an amount of the conformal workfunction metal deposited around the nanowires is varied based on the varying heights at which the nanowires are suspended over the oxide layer; and iii) depositing a conformal poly-silicon layer on the conformal workfunction metal around the nanowires and on the wafer beneath the nanowires.
    Type: Application
    Filed: March 27, 2015
    Publication date: September 29, 2016
    Inventors: Josephine B. Chang, Michael A. Guillorn, Isaac Lauer, Jeffrey W. Sleight
  • Publication number: 20160284805
    Abstract: A device that includes: a substrate layer; a first set of source/drain component(s) defining an nFET (n-type field-effect transistor) region; a second set of source/drain component(s) defining a pFET (p-type field-effect transistor) region; a first suspended nanowire, at least partially suspended over the substrate layer in the nFET region and made from III-V material; and a second suspended nanowire, at least partially suspended over the substrate layer in the pFET region and made from Germanium-containing material. In some embodiments, the first suspended nanowire and the second suspended nanowire are fabricated by adding appropriate nanowire layers on top of a Germanium-containing release layer, and then removing the Germanium-containing release layers so that the nanowires are suspended.
    Type: Application
    Filed: June 14, 2016
    Publication date: September 29, 2016
    Inventors: Guy M. Cohen, Isaac Lauer, Alexander Reznicek, Jeffrey W. Sleight
  • Publication number: 20160284604
    Abstract: In one aspect, a method of forming a CMOS device includes forming nanowires suspended over a BOX, wherein a first/second one or more of the nanowires are suspended at a first/second suspension height over the BOX, and wherein the first suspension height is greater than the second suspension height; depositing a conformal gate dielectric on the BOX and around the nanowires wherein the conformal gate dielectric deposited on the BOX is i) in a non-contact position with the conformal gate dielectric deposited around the first one or more of the nanowires, and ii) is in direct physical contact with the conformal gate dielectric deposited around the second one or more of the nanowires such that the BOX serves as an oxygen source during growth of a conformal oxide layer at the interface between the conformal gate dielectric and the second one or more of the nanowires.
    Type: Application
    Filed: March 27, 2015
    Publication date: September 29, 2016
    Inventors: Josephine B. Chang, Michael A. Guillorn, Isaac Lauer, Jeffrey W. Sleight
  • Publication number: 20160276432
    Abstract: A nanowire field effect transistor (FET) device includes a first source/drain region and a second source/drain region. Each of the first and second source/drain regions are formed on an upper surface of a bulk semiconductor substrate. A gate region is interposed between the first and second source/drain regions, and directly on the upper surface of the bulk semiconductor substrate. A plurality of nanowires are formed only in the gate region. The nanowires are suspended above the semiconductor substrate and define gate channels of the nanowire FET device. A gate structure includes a gate electrode formed in the gate region such that the gate electrode contacts an entire surface of each nanowire.
    Type: Application
    Filed: March 17, 2015
    Publication date: September 22, 2016
    Inventors: Josephine B. Chang, Michael A. Guillorn, Isaac Lauer, Jeffrey W. Sleight
  • Patent number: 9449820
    Abstract: Techniques for reducing nanowire dimension and pitch are provided. In one aspect, a pitch multiplication method for nanowires includes the steps of: providing an SOI wafer having an SOI layer separated from a substrate by a BOX, wherein the SOI layer includes Si; patterning at least one nanowire in the SOI layer, wherein the at least one nanowire as-patterned has a square cross-sectional shape with flat sides; growing epitaxial SiGe on the outside of the at least one nanowire using an epitaxial process selective for growth of the epitaxial SiGe on the flat sides of the at least one nanowire; removing the at least one nanowire selective to the epitaxial SiGe, wherein the epitaxial SiGe that remains includes multiple epitaxial SiGe wires having been formed in place of the at least one nanowire that has been removed.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: September 20, 2016
    Assignee: International Business Machines Corporation
    Inventors: Guy M. Cohen, Michael A. Guillorn, Isaac Lauer, Jeffrey W. Sleight
  • Patent number: 9443949
    Abstract: In one aspect, a method of forming a CMOS device with multiple transistors having different Vt's is provided which includes: forming nanowires and pads on a wafer, wherein the nanowires are suspended at varying heights above an oxide layer of the wafer; and forming gate stacks of the transistors at least partially surrounding portions of each of the nanowires by: i) depositing a conformal gate dielectric around the nanowires and on the wafer beneath the nanowires; ii) depositing a conformal workfunction metal on the conformal gate dielectric around the nanowires and on the wafer beneath the nanowires, wherein an amount of the conformal workfunction metal deposited around the nanowires is varied based on the varying heights at which the nanowires are suspended over the oxide layer; and iii) depositing a conformal poly-silicon layer on the conformal workfunction metal around the nanowires and on the wafer beneath the nanowires.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: September 13, 2016
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Michael A. Guillorn, Isaac Lauer, Jeffrey W. Sleight
  • Patent number: 9443951
    Abstract: Fin-defining mask structures are formed over a semiconductor material layer having a first semiconductor material and a disposable gate structure is formed thereupon. A gate spacer is formed around the disposable gate structure and physically exposed portions of the fin-defining mask structures are subsequently removed. The semiconductor material layer is recessed employing the disposable gate structure and the gate spacer as an etch mask to form recessed semiconductor material portions. Embedded planar source/drain stressors are formed on the recessed semiconductor material portions by selective deposition of a second semiconductor material having a different lattice constant than the first semiconductor material. After formation of a planarization dielectric layer, the disposable gate structure is removed. A plurality of semiconductor fins are formed employing the fin-defining mask structures as an etch mask. A replacement gate structure is formed on the plurality of semiconductor fins.
    Type: Grant
    Filed: November 11, 2013
    Date of Patent: September 13, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Josephine B. Chang, Paul Chang, Michael A. Guillorn, Jeffrey W. Sleight
  • Patent number: 9437613
    Abstract: In one aspect, a method of forming a multiple VT device structure includes the steps of: forming an alternating series of channel and barrier layers as a stack having at least one first channel layer, at least one first barrier layer, and at least one second channel layer; defining at least one first and at least one second active area in the stack; selectively removing the at least one first channel/barrier layers from the at least one second active area, such that the at least one first channel layer and the at least one second channel layer are the top-most layers in the stack in the at least one first and the at least one second active areas, respectively, wherein the at least one first barrier layer is configured to confine charge carriers to the at least one first channel layer in the first active area.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: September 6, 2016
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Isaac Lauer, Amlan Majumdar, Jeffrey W. Sleight
  • Patent number: 9437443
    Abstract: A SIT method includes the following steps. An SIT mandrel material is deposited onto a substrate and formed into a plurality of SIT mandrels. A spacer material is conformally deposited onto the substrate covering a top and sides of each of the SIT mandrels. Atomic Layer Deposition (ALD) is used to deposit the SIT spacer at low temperatures. The spacer material is selected from the group including a metal, a metal oxide, a metal nitride and combinations including at least one of the foregoing materials. The spacer material is removed from all but the sides of each of the SIT mandrels to form SIT sidewall spacers on the sides of each of the SIT mandrels. The SIT mandrels are removed selective to the SIT sidewall spacers revealing a pattern of the SIT sidewall spacers. The pattern of the SIT sidewall spacers is transferred to the underlying stack or substrate.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: September 6, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Markus Brink, Michael A. Guillorn, Sebastian U. Engelmann, Hiroyuki Miyazoe, Adam M. Pyzyna, Jeffrey W. Sleight
  • Publication number: 20160233320
    Abstract: A method of making a field-effect transistor device includes providing a substrate with a fin stack having: a first sacrificial material layer on the substrate, a first semiconductive material layer on the first sacrificial material layer, and a second sacrificial material layer on the first semiconductive material layer. The method includes inserting a dummy gate having a second thickness, a dummy void, and an outer end that is coplanar to the second face. The method includes inserting a first spacer having a first thickness and a first void, and having an outer end that is coplanar to the first face. The method includes etching the first sacrificial material layer in the second plane and the second sacrificial material layer in the fourth plane. The method includes removing, at least partially, the first spacer. The method also includes inserting a second spacer having the first thickness.
    Type: Application
    Filed: April 20, 2016
    Publication date: August 11, 2016
    Inventors: Josephine B. Chang, Michael A. Guillorn, Gen P. Lauer, Isaac Lauer, Jeffrey W. Sleight