Patents by Inventor Jian-Hsing Lee

Jian-Hsing Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7583484
    Abstract: A sensor for electrostatic discharge (ESD) protection includes a voltage divider and a device coupled thereto. The sensor is coupled to an input terminal of the sensor, wherein a voltage drop occurs across the voltage divider and a high state voltage is generated at an output terminal of the sensor when an ESD voltage pulse is applied to the input terminal of the sensor. The device maintains the high state voltage at the output terminal of the sensor, while the ESD voltage pulse is applied to the input terminal of the sensor. A method for ESD protection includes the step of pulling down a gate terminal of a MOS transistor of an ESD circuit to a low state voltage when an ESD pulse is sensed.
    Type: Grant
    Filed: August 20, 2003
    Date of Patent: September 1, 2009
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Hsun Wu, Jian-Hsing Lee
  • Patent number: 7566935
    Abstract: An electrostatic discharge (ESD) structure connected to a bonding pad in an integrated circuit comprising: a P-type substrate with one or more first P+ regions connected to a low voltage supply (GND), a first Nwell formed in the P-type substrate, one or more second P+ regions disposed inside the first Nwell and connected to the bonding pad, at least one first N+ region disposed outside the first Nwell but in the P-type substrate and connected to the GND, at least one second N+ region disposed outside the first Nwell but in the P-type substrate and connected to the bonding pad, wherein the second N+ region is farther away from the first Nwell than the first N+ region, and at least one conductive material disposed above the P-type substrate between the first and second N+ regions and coupled to the GND, wherein the first N+ region, the second N+ region and the conductive material form the source, drain and gate of an NMOS transistor, respectively, and the first P+ region is farther away from the first Nwell tha
    Type: Grant
    Filed: March 1, 2007
    Date of Patent: July 28, 2009
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shu Huei Lin, Jian Hsing Lee, Shao Chang Huang, Cheng Hsu Wu, Chuan Ying Lee
  • Patent number: 7563653
    Abstract: An electrostatic discharge (ESD) protection device includes a diode located in a substrate and an N-type metal oxide semiconductor (NMOS) device located in the substrate adjacent the diode, wherein both the diode and the NMOS are coupled to an input device, and at least a portion of the diode and at least a portion of the NMOS device collectively form an ESD protection device.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: July 21, 2009
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Jian-Hsing Lee, Deng-Shun Chang
  • Publication number: 20090179270
    Abstract: Electrostatic discharge (ESD) protection in high voltage semiconductor devices is disclosed that provides enhanced current isolation between transistor drains or sources by creating an isolation island surrounding the drains or sources. This isolation island can be a higher-doped region within which the drain/source lies. The junction between the higher doping of this island region and the surrounding substrates operates to limit the amount of current that passes through the drain/source. Additionally, oxide features may be used to create an island surrounding the drain/source contact. Again, this isolating effect makes the amount of current passing through the device more uniform, which protects the device from damage due to an ESD event.
    Type: Application
    Filed: March 11, 2008
    Publication date: July 16, 2009
    Inventors: Shui-Hung Chen, Jian-Hsing Lee, Yung-Tien Tsai, Anthony Oates
  • Publication number: 20090101937
    Abstract: The invention describes a structure and a process for providing ESD semiconductor protection with reduced input capacitance. The structure consists of heavily doped P+ guard rings surrounding the I/O ESD protection device and the Vcc to Bss protection device. In addition, there is a heavily doped N+ guard ring surrounding the I/O protection device its P+ guard ring. The guard rings enhance structure diode elements providing enhanced ESD energy discharge path capability enabling the elimination of a specific conventional Vss to I/O pad ESD protection device. This reduces the capacitance seen by the I/O circuit while still providing adequate ESD protection for the active circuit devices.
    Type: Application
    Filed: December 23, 2008
    Publication date: April 23, 2009
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jian-Hsing Lee, Shui-Hunyi Chen
  • Patent number: 7518192
    Abstract: A semiconductor structure for electrostatic discharge protection is presented. The semiconductor structure comprises a grounded gate nMOS (GGNMOS) having a substrate, a gate electrode, a source region and a drain region. A plurality of contact plugs is formed on the source and drain side. A plurality of first level vias is electrically coupled to the GGNMOS and has a substantially asymmetrical layout in the source and drain regions. A second level via(s) re-routes the ESD current to the desired first level vias. The uniformity of the current flow in the GGNMOS is improved.
    Type: Grant
    Filed: November 10, 2004
    Date of Patent: April 14, 2009
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Feng Yu, Jian-Hsing Lee, Jiaw-Ren Shih, Fu Chin Yang
  • Patent number: 7518843
    Abstract: An ESD protection circuit includes a silicon controlled rectifier coupled between a circuit pad and ground for bypassing an ESD current from the circuit pad during an ESD event. An MOS transistor, having a source shared with the silicon controlled rectifier, is coupled between the pad and ground for reducing a trigger voltage of the silicon controlled rectifier during the ESD event. The silicon controlled rectifier has a first diode serially connected to a second diode in an opposite direction, between the pad and the shared source of the MOS transistor, for functioning as a bipolar transistor. In a layout view, a first area for placement of the first and second diodes is interposed between at least two separate sets of second areas for placement of the MOS transistor.
    Type: Grant
    Filed: May 19, 2005
    Date of Patent: April 14, 2009
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yi-Hsun Wu, Jian-Hsing Lee
  • Patent number: 7508639
    Abstract: Input/output devices with robustness of ESD protection are provided. An input/output device comprises an input/output pad, a first NMOS transistor, a second NMOS transistor and an ESD detector. The first NMOS transistor comprises a first drain, a first source and a first gate, wherein the first source and the first gate are coupled to a first ground power rail, and the first drain to the input/output pad. The second NMOS transistor comprises a second drain, a second source and a second gate, wherein the second source is coupled to the first ground power rail, the second drain to the input/output pad, and the second gate to a first pre-driver. When an ESD event is detected, the ESD detector makes the first pre-driver couple the second gate to the first ground power rail, thereby the first and second transistors evenly discharge ESD current.
    Type: Grant
    Filed: December 19, 2005
    Date of Patent: March 24, 2009
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yi-Hsun Wu, Jian-Hsing Lee, Shui-Hung Chen
  • Patent number: 7485905
    Abstract: An electrostatic discharge protection device comprising a multi-finger gate, a first lightly doped region of a second conductivity, a first heavily doped region of the second conductivity, and a second lightly doped region of the second conductivity. The multi-finger gate comprises a plurality of fingers mutually connected in parallel over an active region of a first conductivity. The first lightly doped region of a second conductivity is disposed in the semiconductor substrate and between two of the fingers. The first heavily doped region of the second conductivity is disposed in the first lightly doped region of the second conductivity. The second lightly doped region of the second conductivity is beneath and adjoins the first lightly doped region of the second conductivity.
    Type: Grant
    Filed: July 25, 2006
    Date of Patent: February 3, 2009
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Feng-Chi Hung, Jian-Hsing Lee, Hung-Lin Chen, Deng-Shun Chang
  • Patent number: 7485930
    Abstract: The invention describes a structure and a process for providing ESD semiconductor protection with reduced input capacitance. The structure consists of heavily doped P+ guard rings surrounding the I/O ESD protection device and the Vcc to Bss protection device. In addition, there is a heavily doped N+ guard ring surrounding the I/O protection device its P+ guard ring. The guard rings enhance structure diode elements providing enhanced ESD energy discharge path capability enabling the elimination of a specific conventional Vss to I/O pad ESD protection device. This reduces the capacitance seen by the I/O circuit while still providing adequate ESD protection for the active circuit devices.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: February 3, 2009
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Jian-Hsing Lee, Shui-Hunyi Chen
  • Publication number: 20090008710
    Abstract: A semiconductor device includes a gate electrode over a semiconductor substrate, wherein the gate electrode has a gate width direction; a source/drain region in the semiconductor substrate and adjacent the gate electrode, wherein the source/drain region has a first width in a direction parallel to the gate width direction; and a bulk pick-up region in the semiconductor substrate and abutting the source/drain region. The bulk pick-up region and the source/drain region have opposite conductivity types. The bulk pick-up region has a second width in the width direction, and wherein the second width is substantially less than the first width.
    Type: Application
    Filed: July 3, 2007
    Publication date: January 8, 2009
    Inventors: Chi-San Wei, Kuo-Ming Wu, Jian-Hsing Lee
  • Patent number: 7465994
    Abstract: A layout structure for an ESD protection circuit includes a first MOS device area having a first and second doped regions of the same polarity disposed at two sides of a first conductive gate layer, and a third doped region disposed along the first doped region at one side of the first conductive gate layer. The third doped region has a polarity different from that of the first and second doped regions, such that the third doped region and the second doped region form a diode for enhancing dissipation of ESD current during a negative ESD event.
    Type: Grant
    Filed: August 29, 2006
    Date of Patent: December 16, 2008
    Assignee: Taiwan Semiconductor Manufacturing Co.
    Inventors: Kuo-Feng Yu, Jian-Hsing Lee, Yi-Hsun Wu, C.S Tang
  • Patent number: 7462885
    Abstract: An electrostatic discharge-protected MOS structure is disclosed. An electrostatic discharge-protected MOS structure includes a semiconductor substrate of a first type, a first well of the first type formed in the semiconductor substrate, and a second well of a second type disposed adjacent to the first well. The MOS structure further includes a source region, a drain region, and an oxide layer and a polysilicon layer for forming a gate electrode of the MOS structure. In addition, the MOS structure includes a parasitic SCR comprising at least a parasitic NPN bipolar transistor and a buried layer of the second type interposed between the second well and the semiconductor substrate. The buried layer functions to lower a resistance of the semiconductor substrate during an ESD event so that ESD currents generated by the parasitic SCR are dissipated through the buried layer and the semiconductor substrate, thereby protecting the MOS structure.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: December 9, 2008
    Assignee: Taiwan Semiconductor Manufacturing Co.
    Inventors: Shui-Hung Chen, Jian-Hsing Lee, Yi-Hsun Wu, D. J. Perng, Anthony Oates
  • Publication number: 20080233686
    Abstract: An electrostatic discharge (ESD) protection device includes a diode located in a substrate and an N-type metal oxide semiconductor (NMOS) device located in the substrate adjacent the diode, wherein both the diode and the NMOS are coupled to an input device, and at least a portion of the diode and at least a portion of the NMOS device collectively form an ESD protection device.
    Type: Application
    Filed: May 1, 2008
    Publication date: September 25, 2008
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jian-Hsing LEE, Deng-Shun Chang
  • Publication number: 20080211027
    Abstract: An electrostatic discharge (ESD) structure connected to a bonding pad in an integrated circuit comprising: a P-type substrate with one or more first P+ regions connected to a low voltage supply (GND), a first Nwell formed in the P-type substrate, one or more second P+ regions disposed inside the first Nwell and connected to the bonding pad, at least one first N+ region disposed outside the first Nwell but in the P-type substrate and connected to the GND, at least one second N+ region disposed outside the first Nwell but in the P-type substrate and connected to the bonding pad, wherein the second N+ region is farther away from the first Nwell than the first N+ region, and at least one conductive material disposed above the P-type substrate between the first and second N+ regions and coupled to the GND, wherein the first N+ region, the second N+ region and the conductive material form the source, drain and gate of an NMOS transistor, respectively, and the first P+ region is farther away from the first Nwell tha
    Type: Application
    Filed: March 1, 2007
    Publication date: September 4, 2008
    Inventors: Shu Huei Lin, Jian-Hsing Lee, Shao-Chang Huang, Cheng Hsu Wu, Chuan Ying Lee
  • Patent number: 7420793
    Abstract: A circuit system is disclosed for protecting a capacitor coupled between a voltage supply node and a complementary voltage supply node from an ESD. The circuit system includes at least one NMOS transistor having a drain coupled to the voltage supply node, a source and a gate together coupled to the complementary voltage supply node, and at least one diode chain having one or more diodes serially coupled between the voltage supply node and the complementary voltage supply node. During an ESD event, the diode chain and the NMOS transistor dissipate an ESD current from the voltage supply node to the complementary voltage supply node, thereby protecting the capacitor from ESD induced damages.
    Type: Grant
    Filed: January 12, 2006
    Date of Patent: September 2, 2008
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shao-Chang Huang, Jian-Hsing Lee, Yi-Hsun Wu, Jiaw-Ren Shih
  • Patent number: 7420250
    Abstract: Provided are an electrostatic discharge (ESD) protection device and a method for making such a device. In one example, the ESD protection device includes a Zener diode region formed in a substrate and an N-type metal oxide semiconductor (NMOS) device formed adjacent to the Zener diode region. The Zener diode region has two doped regions, a gate with a grounded potential positioned between the two doped regions, and two light doped drain (LDD) features formed in the substrate. One of the LDD features is positioned between each of the two doped regions and the gate. The NMOS device includes a source and a drain formed in the substrate and a second gate positioned between the source and the drain.
    Type: Grant
    Filed: August 25, 2005
    Date of Patent: September 2, 2008
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shu-Chuan Lee, Ming-Hsiang Song, Shao-Chang Huang, Yi-Hsun Wu, Kuo-Feng Yu, Jian-Hsing Lee, Tong-Chern Ong
  • Patent number: 7420252
    Abstract: A semiconductor device includes a first doped region disposed on a first well in a semiconductor substrate; a second doped region disposed on a second well adjacent to the first well in the semiconductor substrate, the second doped region having a dopant density higher than that of the second well; and a gate structure overlying parts of the first and second wells for controlling a current flowing between the first and second doped regions. A first spacing distance from an interface between the second doped region and the second well to its closest edge of the gate structure is greater than 200 percent of a second spacing distance from a center point of second doped region to the edge of the gate structure, thereby increasing impedance against an electrostatic discharge (ESD) current flowing between the first and second doped regions during an ESD event.
    Type: Grant
    Filed: January 20, 2006
    Date of Patent: September 2, 2008
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kuo-Ming Wu, Jian-Hsing Lee, Yi-Chun Lin, Chi-Chih Chen
  • Patent number: 7405445
    Abstract: A semiconductor integrated circuit structure includes a plurality of diodes disposed in the substrate. These diodes are electrically coupled in series. At least one insertion region is disposed in the substrate between two of the diodes and a supply voltage node electrically coupled to the insertion region. Preferably, a guard ring surrounds the diodes.
    Type: Grant
    Filed: July 9, 2004
    Date of Patent: July 29, 2008
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shao-Chang Huang, Jian-Hsing Lee
  • Publication number: 20080174923
    Abstract: A semiconductor device formed in a semiconductor substrate for dissipating electrostatic discharge and/or accumulated charge in an integrated circuit is provided. In one embodiment, the device comprises a semiconductor substrate; a plurality of layers of metal lines formed overlying the substrate; a plurality of via plugs through intermetal dielectric layers between the layers of metal lines and wherein the via plugs interconnect the metal lines; and a dummy pad formed over the plurality of layers of metal lines, the dummy pad having a diode connected thereto and to ground for providing a discharge path for the electrostatic discharge and/or accumulated charge.
    Type: Application
    Filed: June 15, 2007
    Publication date: July 24, 2008
    Inventors: Yi-Hsun Wu, Yan-Chih Jiang, Yu-Chang Lin, Jian-Hsing Lee