Patents by Inventor Jianheng Li

Jianheng Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10748759
    Abstract: The present disclosure relates to an improved large area substrate semiconductor device having a high density passivation layer, and method of fabrication thereof. More specifically, a high density SiN passivation layer is formed by plasma enhanced chemical vapor deposition of silane and nitrogen gases at low temperatures. Argon is added as a diluent gas in order to increase SiN passivation layer film density and overall film quality.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: August 18, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jianheng Li, Lai Zhao, Soo Young Choi
  • Publication number: 20200227249
    Abstract: The present disclosure relates to an improved large area substrate semiconductor device having a high density passivation layer, and method of fabrication thereof. More specifically, a high density SiN passivation layer is formed by plasma enhanced chemical vapor deposition of silane and nitrogen gases at low temperatures. Argon is added as a diluent gas in order to increase SiN passivation layer film density and overall film quality.
    Type: Application
    Filed: January 15, 2019
    Publication date: July 16, 2020
    Inventors: Jianheng LI, Lai ZHAO, Soo Young CHOI
  • Publication number: 20200098549
    Abstract: A plasma processing chamber includes a chamber body and a lid assembly coupled to the chamber body to define a processing volume. The lid assembly includes a backing plate coupled to the chamber body, a diffuser with a plurality of openings formed therethrough, and a heat conductive spacer disposed between and coupled to the backing plate and the diffuser to transfer heat from the diffuser to the backing plate. The plasma processing chamber further includes a substrate support disposed within the processing volume.
    Type: Application
    Filed: September 26, 2018
    Publication date: March 26, 2020
    Inventors: Beom Soo PARK, Robin L. TINER, Jianheng LI, Sang Jeong OH, Lai ZHAO, Gaku FURUTA, Soo Young CHOI, Jeevan Prakash SEQUEIRA, Wei-Ting CHEN, Hsiao-Ling YANG, Cheng-Hang HSU, Won Ho SUNG, Hyun Young HONG
  • Publication number: 20200058496
    Abstract: A method for depositing a silicon-containing film, the method comprising: placing a substrate comprising at least one surface feature into a flowable CVD reactor which is at a temperature of from about ?20° C. to about 400° C.; introducing into the reactor at least one silicon-containing compound having at least one acetoxy group to at least partially react the at least one silicon-containing compound to form a flowable liquid oligomer wherein the flowable liquid oligomer forms a silicon oxide coating on the substrate and at least partially fills at least a portion of the at least one surface feature. Once cured, the silicon oxide coating has a low k and excellent mechanical properties.
    Type: Application
    Filed: September 24, 2019
    Publication date: February 20, 2020
    Applicant: Versum Materials US, LLC
    Inventors: Jianheng Li, Raymond Nicholas Vrtis, Robert Gordon Ridgeway, Manchao Xiao, Xinjian Lei
  • Publication number: 20200043706
    Abstract: Embodiments described herein generally relate to apparatus and methods for processing a substrate utilizing a high radio frequency (RF) power. The high RF power enables deposition of films on the substrate with more desirable properties. A first plurality of insulating members is disposed on a plurality of brackets and extends laterally inward from a chamber body. A second plurality of insulating members is disposed on the chamber body and extends from the first plurality of insulating members to a support surface of the chamber body. The insulating members reduce the occurrence of arcing between the plasma and the chamber body.
    Type: Application
    Filed: August 1, 2018
    Publication date: February 6, 2020
    Inventors: Jianheng LI, Lai ZHAO, Robin L. TINER, Allen K. LAU, Gaku FURUTA, Soo Young CHOI
  • Publication number: 20200032389
    Abstract: Halidosilane compounds, processes for synthesizing halidosilane compounds, compositions comprising halidosilane precursors, and processes for depositing silicon-containing films (e.g., silicon, amorphous silicon, silicon oxide, silicon nitride, silicon carbide, silicon oxynitride, silicon carbonitride, doped silicon films, and metal-doped silicon nitride films) using halidosilane precursors. Examples of halidosilane precursor compounds described herein, include, but are not limited to, monochlorodisilane (MCDS), monobromodisilane (MBDS), monoiododisilane (MIDS), monochlorotrisilane (MCTS), and monobromotrisilane (MBTS), monoiodotrisilane (MITS). Also described herein are methods for depositing silicon containing films such as, without limitation, silicon, amorphous silicon, silicon oxide, silicon nitride, silicon carbide, silicon oxynitride, silicon carbonitride, doped silicon films, and metal-doped silicon nitride films, at one or more deposition temperatures of about 500° C. or less.
    Type: Application
    Filed: June 14, 2016
    Publication date: January 30, 2020
    Inventors: Xinjian Lei, Jianheng Li, John Francis Lehmann, Alan Charles Cooper
  • Publication number: 20190382886
    Abstract: The siloxanes containing compositions and methods are disclosed. The disclosed method relates to a method of depositing a dielectric film on a substrate, the method involving the steps of a) placing the substrate in a reaction chamber; b) introducing a process gas comprising a cyclic silicon-containing compound and an oxidant; and c) exposing the substrate to the process gas under conditions such that the cyclic silicon-containing compound and the oxidant react to form a flowable film on the substrate surface. The method can further involve converting the flowable film into a solid dielectric material (e.g., a silicon oxide film). In certain embodiments, conversion of the film may be accomplished by annealing the as-deposited film by a thermal, plasma anneal and/UV curing.
    Type: Application
    Filed: June 16, 2019
    Publication date: December 19, 2019
    Applicant: Versum Materials US, LLC
    Inventors: Jianheng Li, Xinjian Lei, Raymond N. Vrtis, Robert G. Ridgeway
  • Publication number: 20190359637
    Abstract: Bisaminoalkoxysilanes of Formula I, and methods using same, are described herein: R1Si(NR2R3)(NR4R5)OR6??I where R1 is selected from hydrogen, a C1 to C10 linear alkyl group, a C3 to C10 branched alkyl group, a C3 to C10 cyclic alkyl group, a C3 to C10 alkenyl group, a C3 to C10 alkynyl group, a C4 to C10 aromatic hydrocarbon group; R2, R3, R4, and R5 are each independently selected from hydrogen, a C4 to C10 branched alkyl group, a C3 to C10 cyclic alkyl group, a C3 to C10 alkenyl group, a C3 to C10 alkynyl group, and a C4 to C10 aromatic hydrocarbon group; R6 is selected from a C1 to C10 linear alkyl group, a C3 to C10 branched alkyl group, a C3 to C10 cyclic alkyl group, a C3 to C10 alkenyl group, a C2 to C10 alkynyl group, and a C4 to C10 aromatic hydrocarbon group.
    Type: Application
    Filed: August 9, 2019
    Publication date: November 28, 2019
    Applicant: Versum Materials US, LLC.
    Inventors: Daniel P. Spence, Xinjian Lei, Ronald Martin Pearlstein, Manchao Xiao, Jianheng Li
  • Patent number: 10468244
    Abstract: A method for depositing a silicon-containing film, the method comprising: placing a substrate comprising at least one surface feature into a flowable CVD reactor which is at a temperature of from about ?20° C. to about 400° C.; introducing into the reactor at least one silicon-containing compound having at least one acetoxy group to at least partially react the at least one silicon-containing compound to form a flowable liquid oligomer wherein the flowable liquid oligomer forms a silicon oxide coating on the substrate and at least partially fills at least a portion of the at least one surface feature. Once cured, the silicon oxide coating has a low k and excellent mechanical properties.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: November 5, 2019
    Assignee: VERSUM MATERIALS US, LLC
    Inventors: Jianheng Li, Raymond Nicholas Vrtis, Robert Gordon Ridgeway, Manchao Xiao, Xinjian Lei
  • Publication number: 20190304775
    Abstract: Described herein is an apparatus comprising a plurality of silicon-containing layers wherein the silicon-containing layers are selected from a silicon oxide and a silicon nitride layer or film. Also described herein are methods for forming the apparatus to be used, for example, as 3D vertical NAND flash memory stacks. In one particular aspect or the apparatus, the silicon oxide layer comprises slightly compressive stress and good thermal stability. In this or other aspects of the apparatus, the silicon nitride layer comprises slightly tensile stress and less than 300 MPa stress change after up to about 800° C. thermal treatment. In this or other aspects of the apparatus, the silicon nitride layer etches much faster than the silicon oxide layer in hot H3PO4, showing good etch selectivity.
    Type: Application
    Filed: June 4, 2019
    Publication date: October 3, 2019
    Applicant: Versum Materials US, LLC
    Inventors: Jianheng Li, Robert G. Ridgeway, Xinjian Lei, Raymond N. Vrtis, Bing Han, Madhukar Rao
  • Publication number: 20190292658
    Abstract: Described herein are compositions and methods using same for forming a silicon-containing film such as without limitation a silicon oxide, silicon nitride, silicon oxynitride, a carbon-doped silicon nitride, or a carbon-doped silicon oxide film on at least a surface of a substrate having a surface feature. In one aspect, the silicon-containing films are deposited using a compound having Formula I or II described herein.
    Type: Application
    Filed: December 21, 2016
    Publication date: September 26, 2019
    Inventors: Jianheng Li, Xinjian Lei, Robert Gordon Ridgeway, Raymond Nicholas Vrtis, Manchao Xiao, Richard Ho
  • Patent number: 10421766
    Abstract: Bisaminoalkoxysilanes of Formula I, and methods using same, are described herein: R1Si(NR2R3)(NR4R5)OR6??I where R1 is selected from hydrogen, a C1 to C10 linear alkyl group, a C3 to C10 branched alkyl group, a C3 to C10 cyclic alkyl group, a C3 to C10 alkenyl group, a C3 to C10 alkynyl group, a C4 to C10 aromatic hydrocarbon group; R2, R3, R4, and R5 are each independently selected from hydrogen, a C4 to C10 branched alkyl group, a C3 to C10 cyclic alkyl group, a C3 to C10 alkenyl group, a C3 to C10 alkynyl group, and a C4 to C10 aromatic hydrocarbon group; R6 is selected from a C1 to C10 linear alkyl group, a C3 to C10 branched alkyl group, a C3 to C10 cyclic alkyl group, a C3 to C10 alkenyl group, a C2 to C10 alkynyl group, and a C4 to C10 aromatic hydrocarbon group.
    Type: Grant
    Filed: February 8, 2016
    Date of Patent: September 24, 2019
    Assignee: VERSUM MATERIALS US, LLC
    Inventors: Daniel P. Spence, Xinjian Lei, Ronald Martin Pearlstein, Manchao Xiao, Jianheng Li
  • Patent number: 10395920
    Abstract: A method and composition for producing a low k dielectric film via chemical vapor deposition is provided. In one aspect, the method comprises the steps of: providing a substrate within a reaction chamber; introducing into the reaction chamber gaseous reagents including at least one structure-forming precursor comprising a silacyclic compound, and a porogen; applying energy to the gaseous reagents in the reaction chamber to induce reaction of the gaseous reagents to deposit a preliminary film on the substrate, wherein the preliminary film contains the porogen, and the preliminary film is deposited; and removing from the preliminary film at least a portion of the porogen contained therein and provide the film with pores and a dielectric constant of 2.7 or less.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: August 27, 2019
    Assignee: VERSUM MATERIALS US, LLC
    Inventors: Raymond Nicholas Vrtis, Robert Gordon Ridgeway, Jianheng Li, William Robert Entley, Jennifer Lynn Anne Achtyl, Xinjian Lei
  • Patent number: 10354860
    Abstract: Described herein is an apparatus comprising a plurality of silicon-containing layers wherein the silicon-containing layers are selected from a silicon oxide and a silicon nitride layer or film. Also described herein are methods for forming the apparatus to be used, for example, as 3D vertical NAND flash memory stacks. In one particular aspect or the apparatus, the silicon oxide layer comprises slightly compressive stress and good thermal stability. In this or other aspects of the apparatus, the silicon nitride layer comprises slightly tensile stress and less than 300 MPa stress change after up to about 800° C. thermal treatment. In this or other aspects of the apparatus, the silicon nitride layer etches much faster than the silicon oxide layer in hot H3PO4, showing good etch selectivity.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: July 16, 2019
    Assignee: VERSUM MATERIALS US, LLC
    Inventors: Jianheng Li, Robert Gordon Ridgeway, Xinjian Lei, Raymond Nicholas Vrtis, Bing Han, Madhukar Bhaskara Rao
  • Patent number: 10319862
    Abstract: Described herein are apparatus comprising one or more silicon-containing layers and a metal oxide layer. Also described herein are methods for forming one or more silicon-containing layers to be used, for example, as passivation layers in a display device. In one particular aspect, the apparatus comprises a transparent metal oxide layer, a silicon oxide layer and a silicon nitride layer. In this or other aspects, the apparatus is deposited at a temperature of 350° C. or below. The silicon-containing layers described herein comprise one or more of the following properties: a density of about 1.9 g/cm3 or greater; a hydrogen content of about 4×1022 cm?3 or less, and a transparency of about 90% or greater at 400-700 nm as measured by a UV-visible light spectrometer.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: June 11, 2019
    Assignee: VERSUM MATERIALS US, LLC
    Inventors: Robert Gordon Ridgeway, Andrew David Johnson, Anupama Mallikarjunan, Raymond Nicholas Vrtis, Xinjian Lei, Mark Leonard O'Neill, Manchao Xiao, Jianheng Li, Michael T. Savo
  • Publication number: 20190115475
    Abstract: Embodiments described herein provide thin film transistors (TFTs) and processes to reduce plasma induced damage in TFTs. In one embodiment, a buffer layer is disposed over a substrate and a semiconductor layer is disposed over the buffer layer. A gate dielectric layer is disposed over the semiconductor layer. The gate dielectric layer contacts the semiconductor layer at an interface. The gate electrode 204 is disposed over the gate dielectric layer. The gate dielectric layer has a Dit of about 5e10 cm?2eV?1 to about 5e11 cm?2eV?1 and a hysteresis of about 0.10 V to about 0.30 V improve performance capability of the TFT while having a breakdown field between about 6 MV/cm and about 10 MV/cm.
    Type: Application
    Filed: September 27, 2018
    Publication date: April 18, 2019
    Inventors: Jianheng LI, Lai ZHAO, Yujia ZHAI, Soo Young CHOI
  • Publication number: 20190055645
    Abstract: Described herein are compositions and methods using same for forming a silicon-containing film such as without limitation a silicon carbide, silicon nitride, silicon oxide, silicon oxynitride, a carbon-doped silicon nitride, a carbon-doped silicon oxide, or a carbon doped silicon oxynitride film on at least a surface of a substrate having a surface feature. In one aspect, the silicon-containing films are deposited using the co-deposition of a first compound comprising a carbon-carbon double or carbon-carbon triple bond and a second compound comprising at least one Si—H bond.
    Type: Application
    Filed: February 22, 2017
    Publication date: February 21, 2019
    Inventors: Jianheng Li, Xinjian Lei, Raymond Nicholas Vrtis, Robert Gordon Ridgeway, Dino Sinatore, Manchao Xiao
  • Patent number: 10145008
    Abstract: Described herein are compositions and methods using same for forming a silicon-containing film such as, without limitation, a carbon doped silicon oxide film, a carbon doped silicon nitride, a carbon doped silicon oxynitride film in a deposition process. In one aspect, the composition comprises at least cyclic carbosilane having at least one Si—C—Si linkage and at least one anchoring group selected from a halide atom, an amino group, and combinations thereof.
    Type: Grant
    Filed: February 4, 2016
    Date of Patent: December 4, 2018
    Assignee: VERSUM MATERIALS US, LLC
    Inventors: Haripin Chandra, Kirk Scott Cuthill, Anupama Mallikarjunan, Xinjian Lei, Matthew R. MacDonald, Manchao Xiao, Madhukar Bhaskara Rao, Jianheng Li
  • Publication number: 20180315598
    Abstract: A method for depositing a silicon-containing film, the method comprising: placing a substrate comprising at least one surface feature into a flowable CVD reactor which is at a temperature of from about ?20° C. to about 100° C.; increasing pressure in the reactor to at least 10 torr; and introducing into the reactor at least one silicon-containing compound having at least one acetoxy group to at least partially react the at least one silicon-containing compound to form a flowable liquid oligomer wherein the flowable liquid oligomer forms a silicon oxide coating on the substrate and at least partially fills at least a portion of the at least one surface feature. Once cured, the silicon oxide coating has a low k and excellent mechanical properties.
    Type: Application
    Filed: June 11, 2018
    Publication date: November 1, 2018
    Applicant: Versum Materials US, LLC
    Inventors: Jianheng Li, Raymond Nicholas Vrtis, Robert Gordon Ridgeway, Manchao Xiao, Xinjian Lei
  • Patent number: 10106890
    Abstract: Compositions and methods using same for forming a silicon-containing film such as without limitation a silicon oxide, silicon nitride, silicon oxynitride, a carbon-doped silicon nitride, or a carbon-doped silicon oxide film on at least a surface of a substrate having a surface feature. In one aspect, the composition comprises at least one compound is selected from the group consisting of a siloxane, an trisilylamine-based compound, an organoaminodisilane compound, and a cyclic trisilazane compound.
    Type: Grant
    Filed: October 23, 2015
    Date of Patent: October 23, 2018
    Assignee: VERSUM MATERIALS US, LLC
    Inventors: Jianheng Li, John Francis Lehmann, Xinjian Lei, Raymond Nicholas Vrtis, Robert Gordon Ridgeway, William Robert Entley