Patents by Inventor Jing Guo

Jing Guo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10629495
    Abstract: A semiconductor structure comprises a semiconductor substrate, an N-type stacked nanosheet channel structure formed on the semiconductor substrate, and a P-type stacked nanosheet channel structure formed adjacent to the N-type stacked nanosheet channel structure on the semiconductor substrate. Each of the adjacent N-type and P-type stacked nanosheet channel structures comprises a plurality of stacked channel regions with each such channel region being substantially surrounded by a gate dielectric layer and a gate work function metal layer, and with the gate work function metal layer being separated from the channel regions by the gate dielectric layer. The gate dielectric and gate work function metal layers of the adjacent N-type and P-type stacked nanosheet channel structures are substantially eliminated from a shared gate region between the adjacent N-type and P-type stacked nanosheet channel structures.
    Type: Grant
    Filed: January 7, 2019
    Date of Patent: April 21, 2020
    Assignee: International Business Machines Corporation
    Inventors: Indira Seshadri, Ekmini Anuja De Silva, Jing Guo, Romain J. Lallement, Ruqiang Bao, Zhenxing Bi, Sivananda Kanakasabapathy
  • Patent number: 10592368
    Abstract: A method and system of imputing corrupted sequential data is provided. A plurality of input data vectors of a sequential data is received. For each input data vector of the sequential data, the input data vector is corrupted. The corrupted input data vector is mapped to a staging hidden layer to create a staging vector. The input data vector is reconstructed based on the staging vector, to provide an output data vector. adjusted parameter of the staging hidden layer is iteratively trained until it is within a predetermined tolerance of a loss function. A next input data vector of the sequential data is predicted based on the staging vector. The predicted next input data vector is stored.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: March 17, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Shi Jing Guo, Xiang Li, Hai Feng Liu, Jing Mei, Zhi Qiao, Guo Tong Xie, Shi Wan Zhao
  • Publication number: 20200080140
    Abstract: Provided are a vesicular adaptor and a single-chain cyclic library constructed by using the adaptor. The library can be used for RNA sequencing and other sequencing platforms dependent on a single-stranded cyclic library, and has the advantage of high throughput sequencing, high accuracy and simple operations.
    Type: Application
    Filed: September 19, 2019
    Publication date: March 12, 2020
    Inventors: Yuan Jiang, Jing Guo, Xiaojun Ji, Chunyu Geng, Kai Tian, Xia Zhao, Huaiqian Xu, Wenwei Zhang, Hui Jiang, Radoje Drmanac
  • Patent number: 10586697
    Abstract: Embodiments of the present invention are directed to the wet stripping of an organic planarization layer (OPL) using reversible UV crosslinking and de-crosslinking. In a non-limiting embodiment of the invention, an interlayer dielectric is formed over a substrate. A trench is formed in the interlayer dielectric. A work function metal is formed over the interlayer dielectric such that a portion of the work function metal partially fills the trench. A UV sensitive OPL is formed over the work function metal such that a portion of the UV sensitive OPL fills the trench. The UV sensitive OPL can be crosslinked by applying light at a first UV frequency and de-crosslinked by applying light at a second UV frequency.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: March 10, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ekmini A. De Silva, Nelson Felix, Jing Guo, Indira Seshadri
  • Publication number: 20200073246
    Abstract: An EUV lithographic structure and methods according to embodiments of the invention includes an EUV photosensitive resist layer disposed directly on an oxide hardmask layer, wherein the oxide hardmask layer is doped with dopant ions to form a doped oxide hardmask layer so as to improve adhesion between the EUV lithographic structure and the oxide hardmask. The EUV lithographic structure is free of a separate adhesion layer.
    Type: Application
    Filed: November 6, 2019
    Publication date: March 5, 2020
    Inventors: Yongan Xu, Jing Guo, Ekmini A. De Silva, Oleg Gluschenkov
  • Publication number: 20200050113
    Abstract: A semiconductor structure comprises a semiconductor substrate, and a multi-layer patterning material film stack formed on the semiconductor substrate. The patterning material film stack comprises at least a hard mask layer and a resist layer formed over the hard mask layer. The hard mask layer is configured to support selective deposition of a metal-containing layer on a developed pattern of the resist layer through inclusion in the hard mask layer of one or more materials inhibiting deposition of the metal-containing layer on portions of the hard mask layer corresponding to respective openings in the resist layer. The hard mask layer illustratively comprises, for example, at least one of a grafted self-assembled monolayer configured to inhibit deposition of the metal-containing layer, and a grafted polymer brush material configured to inhibit deposition of the metal-containing layer.
    Type: Application
    Filed: October 18, 2019
    Publication date: February 13, 2020
    Inventors: Ekmini Anuja De Silva, Indira Seshadri, Jing Guo, Ashim Dutta, Nelson Felix
  • Publication number: 20200050108
    Abstract: A self-priming resist may be formed from a first random copolymer forming a resist and a polymer brush having the general formula poly(A-r-B)-C-D, wherein A is a first polymer unit, B is a second polymer unit, wherein A and B are the same or different polymer units, C is a cleavable unit, D is a grafting group and r indicates that poly(A-r-B) is a second random copolymer formed from the first and second polymer units. The first random copolymer may be the same or different from the second random polymer. The self-priming resist can create a one-step method for forming an adhesion layer and resist by using the resist/brush blend.
    Type: Application
    Filed: August 11, 2018
    Publication date: February 13, 2020
    Inventors: Chi-Chun Liu, Indira Seshadri, Kristin Schmidt, Nelson Felix, Daniel Sanders, Jing Guo, Ekmini Anuja De Silva, Hoa Truong
  • Publication number: 20200051872
    Abstract: Methods are presented for forming multi-threshold field effect transistors. The methods generally include depositing and patterning an organic planarizing layer to protect underlying structures formed in a selected one of the nFET region and the pFET region of a semiconductor wafer. In the other one of the nFET region and the pFET region, structures are processed to form an undercut in the organic planarizing layer. The organic planarizing layer is subjected to a reflow process to fill the undercut. The methods are effective to protect a boundary between the nFET region and the pFET region.
    Type: Application
    Filed: August 9, 2018
    Publication date: February 13, 2020
    Inventors: Jing Guo, Ekmini A. De Silva, Nicolas Loubet, Indira Seshadri, Nelson Felix
  • Patent number: 10551742
    Abstract: An EUV lithographic structure and methods according to embodiments of the invention includes an EUV photosensitive resist layer disposed directly on an oxide hardmask layer, wherein the oxide hardmask layer is doped with dopant ions to form a doped oxide hardmask layer so as to improve adhesion between the EUV lithographic structure and the oxide hardmask. The EUV lithographic structure is free of a separate adhesion layer.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: February 4, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Yongan Xu, Jing Guo, Ekmini A. De Silva, Oleg Gluschenkov
  • Patent number: 10544451
    Abstract: Provided are a vesicular linker and a single-chain cyclic library constructed by using the linker. The library can be used for RNA sequencing and other sequencing platforms dependent on a single-stranded cyclic library, and has the advantages of high throughput sequencing, high accuracy and simple operations.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: January 28, 2020
    Assignee: MGI TECH CO., LTD.
    Inventors: Yuan Jiang, Jing Guo, Xiaojun Ji, Chunyu Geng, Kai Tian, Xia Zhao, Huaiqian Xu, Wenwei Zhang, Hui Jiang, Radoje Drmanac
  • Publication number: 20190355851
    Abstract: A semiconductor structure and a method for fabricating the same. The semiconductor structure includes at least a first channel region and a second channel region. The first channel region and the second channel region each include metal gate structures surrounding a different nanosheet channel layer. The metal gate structures of the first and second channel regions are respectively separated from each other by an unfilled gap. The method includes forming a gap fill layer between and in contact with gate structures surrounding nanosheet channel layers in multiple channel regions. Then, after the gap fill layer has been formed for each nanosheet stack, a masking layer is formed over the gate structures and the gap fill layer in at least a first channel region. The gate structures and the gap fill layer in at least a second channel region remain exposed.
    Type: Application
    Filed: May 15, 2018
    Publication date: November 21, 2019
    Inventors: Indira SESHADRI, Ekmini Anuja DE SILVA, Jing GUO, Ruqiang BAO, Muthumanickam SANKARAPANDIAN, Nelson FELIX
  • Patent number: 10473642
    Abstract: Implementations herein relates to effect-directed identification of targeted and non-targeted androgen disruptors. The implementations include primary separation, androgenic activity testing, high throughput separation and preparation of toxicants, active component scanning based on high performance liquid chromatography-time of flight mass spectrometry, targeted screening of suspicious androgenic substances, non-target identification of androgenic compounds combining mass spectrum, chromatography and toxicity characteristics and toxicity confirmation. The implementations perform separation using SPE and preparative separation in series to obtain high throughput separation fractions, utilize DMSO as a protective agent to optimize concentration of second fractions, utilize target databases to achieve target identification of key toxicants.
    Type: Grant
    Filed: September 11, 2016
    Date of Patent: November 12, 2019
    Assignee: Nanjing University
    Inventors: Wei Shi, Jing Guo, Hongxia Yu
  • Publication number: 20190324812
    Abstract: Burst throttling methods may be used to manage computing resources of a data storage service. Tokens may represent I/O operations executed by a customer of the data storage service. A first token bucket may contain a set of tokens representing the overall I/O operation capacity of the data storage service. Additionally, a second token bucket may contain a set of tokens for a given logical volume maintained by the data storage service. When I/O requests are received tokens may be charged the first token bucket and the second token bucket. Furthermore, if there is sufficient capacity, the data storage service may charge a reduced number of tokens to the third token bucket.
    Type: Application
    Filed: July 2, 2019
    Publication date: October 24, 2019
    Inventors: Norbert Paul Kusters, John Robert Smiley, Marc John Brooker, Bei-Jing Guo, Marc Levy
  • Patent number: 10435736
    Abstract: Provided are a target region enrichment method based on multiplex PCR, and a reagent, the method comprising: connecting a first linker and a second linker respectively at two ends of a nucleic acid segment containing target regions to be enriched so as to obtain a linker-connected product; performing a PCR amplification on the linker-connected product using a first primer specifically bound to the first linker and a second primer specifically bound to the second linker to obtain an amplified product, the first primer or the second primer having a first affinity label; capturing a single strand having the first affinity label in the amplified product using a solid phase carrier; performing single primer linear amplification using a third primer with the captured single strand as a template; performing exponential amplification using the third primer and the first primer, with the linearly amplified product as the template, to obtain a product containing the target regions.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: October 8, 2019
    Assignee: MGI TECH CO., LTD.
    Inventors: Jing Guo, Rongrong Guo, Meiyan Li, Chunyu Geng, Hui Jiang
  • Publication number: 20190306186
    Abstract: Embodiments of this application provide an upload interface identification method performed at an identification server. The identification server obtains a to-be-identified request packet that is contained in request packets from a page client to a page server. After parsing a content feature of the to-be-identified request packet, the server determines whether the content feature corresponds to a predefined content feature of an upload request packet authorized by the page server. The server then determines that an interface address indicated by the upload request packet corresponds to an upload interface of the to-be-identified request packet if the content feature corresponds to the set content feature of the upload request packet.
    Type: Application
    Filed: June 17, 2019
    Publication date: October 3, 2019
    Inventors: Xing Zheng, Po Hu, Jing Guo, Qiang Zhang, Yuhe Fan, Fang Wang, Yong Yang, Wentao Tang
  • Publication number: 20190295841
    Abstract: Embodiments of the present invention are directed to the wet stripping of an organic planarization layer (OPL) using reversible UV crosslinking and de-crosslinking. In a non-limiting embodiment of the invention, an interlayer dielectric is formed over a substrate. A trench is formed in the interlayer dielectric. A work function metal is formed over the interlayer dielectric such that a portion of the work function metal partially fills the trench. A UV sensitive OPL is formed over the work function metal such that a portion of the UV sensitive OPL fills the trench. The UV sensitive OPL can be crosslinked by applying light at a first UV frequency and de-crosslinked by applying light at a second UV frequency.
    Type: Application
    Filed: May 29, 2019
    Publication date: September 26, 2019
    Inventors: Ekmini A. De Silva, Nelson Felix, Jing Guo, Indira Seshadri
  • Publication number: 20190270794
    Abstract: The present disclosure encompasses compositions and methods for effectively treating at least one symptom or sign of A plaque or cerebral amyloid angiopathy (CAA) associated symptoms, or for decreasing amyloid plaque load or CAA load. The method comprises administering an effective amount of an anti-ApoE antibody to a mammalian subject, such as to a human.
    Type: Application
    Filed: October 27, 2017
    Publication date: September 5, 2019
    Inventors: David Holtzman, Hong Jiang, Fan Liao, Thu Nga Bien-Ly, Mark S. Dennis, Jing Guo, Adam P. Silverman, Ryan J. Watts, Yin Zhang
  • Patent number: 10388510
    Abstract: Embodiments of the present invention are directed to the wet stripping of an organic planarization layer (OPL) using reversible UV crosslinking and de-crosslinking. In a non-limiting embodiment of the invention, an interlayer dielectric is formed over a substrate. A trench is formed in the interlayer dielectric. A work function metal is formed over the interlayer dielectric such that a portion of the work function metal partially fills the trench. A UV sensitive OPL is formed over the work function metal such that a portion of the UV sensitive OPL fills the trench. The UV sensitive OPL can be crosslinked by applying light at a first UV frequency and de-crosslinked by applying light at a second UV frequency.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: August 20, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ekmini A. De Silva, Nelson Felix, Jing Guo, Indira Seshadri
  • Patent number: 10387200
    Abstract: Burst throttling methods may be used to manage computing resources of a data storage service. Tokens may represent I/O operations executed by a customer of the data storage service. A first token bucket may contain a set of tokens representing the overall I/O operation capacity of the data storage service. Additionally, a second token bucket may contain a set of tokens for a given logical volume maintained by the data storage service. When I/O requests are received tokens may be charged the first token bucket and the second token bucket. Furthermore, if there is sufficient capacity, the data storage service may charge a reduced number of tokens to the third token bucket.
    Type: Grant
    Filed: July 10, 2017
    Date of Patent: August 20, 2019
    Assignee: Amazon Technologies, Inc.
    Inventors: Norbert Paul Kusters, John Robert Smiley, Marc John Brooker, Bei-Jing Guo, Marc Levy
  • Publication number: 20190221423
    Abstract: Embodiments of the present invention are directed to the wet stripping of an organic planarization layer (OPL) using reversible UV crosslinking and de-crosslinking. In a non-limiting embodiment of the invention, an interlayer dielectric is formed over a substrate. A trench is formed in the interlayer dielectric. A work function metal is formed over the interlayer dielectric such that a portion of the work function metal partially fills the trench. A UV sensitive OPL is formed over the work function metal such that a portion of the UV sensitive OPL fills the trench. The UV sensitive OPL can be crosslinked by applying light at a first UV frequency and de-crosslinked by applying light at a second UV frequency.
    Type: Application
    Filed: January 12, 2018
    Publication date: July 18, 2019
    Inventors: Ekmini A. De Silva, Nelson Felix, Jing Guo, Indira Seshadri