Patents by Inventor Joel M. Huston

Joel M. Huston has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150059981
    Abstract: Methods and apparatus for processing substrates are provided herein. In some embodiments, an apparatus for processing substrates includes a chamber body enclosing a processing volume, the chamber body comprising a chamber floor, a chamber wall coupled to the chamber floor, and a chamber lid removably coupled to the chamber wall, wherein at least one of the chamber floor, the chamber wall, and the chamber lid comprise passages for a flow of a thermal control media; a heater plate disposed adjacent to and spaced apart from the chamber floor; a sleeve disposed adjacent to and spaced apart from the chamber wall, the sleeve supported by the heater plate; and a first sealing element disposed at a first interface between the chamber wall and the chamber lid.
    Type: Application
    Filed: July 16, 2014
    Publication date: March 5, 2015
    Inventors: JOEL M. HUSTON, OLKAN CUVALCI, MICHAEL P. KARAZIM, JOSEPH YUDOVSKY
  • Patent number: 8846163
    Abstract: A method for removing native oxides from a substrate surface is provided. In one embodiment, the method comprises positioning a substrate having an oxide layer into a processing chamber, exposing the substrate to a gas mixture while forming a volatile film on the substrate and maintaining the substrate at a temperature below 65° C., heating the substrate to a temperature of at least about 75° C. to sublimate the volatile film and remove the oxide layer, and depositing a first layer on the substrate after heating the substrate.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: September 30, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Chien-Teh Kao, Jing-Pei (Connie) Chou, Chiukin (Steven) Lai, Sal Umotoy, Joel M. Huston, Son Trinh, Mei Chang, Xiaoxiong (John) Yuan, Yu Chang, Xinliang Lu, Wei W. Wang, See-Eng Phan
  • Publication number: 20140252015
    Abstract: Lid assemblies for processing chamber and processing chambers including the lid assemblies are described. The lid assemblies include a high temperature lid module and a housing. The high temperature lid module being positioned adjacent a process liner of a processing chamber. The flexible housing positioned around the high temperature lid module and joined to the high temperature lid module with an elastomeric ring.
    Type: Application
    Filed: March 11, 2014
    Publication date: September 11, 2014
    Inventors: Ilker Durukan, Joel M. Huston, Dien-Yeh Wu, Chien-Teh Kao, Mei Chang
  • Publication number: 20140217665
    Abstract: Embodiments of substrate supports are provided herein. In some embodiments, a substrate support may include a support plate having a support surface a support plate having a support surface to support a substrate, a support ring to support a substrate at a perimeter of the support surface; and a plurality of first support elements disposed in the support ring, wherein an end portion of each of the first support elements is raised above an upper surface of the support ring to define a gap between the upper surface of the support ring and an imaginary plane disposed on the end portions of plurality of first support elements.
    Type: Application
    Filed: February 1, 2013
    Publication date: August 7, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: OLKAN CUVALCI, JOEL M. HUSTON, GWO-CHUAN TZU
  • Publication number: 20140174362
    Abstract: Provided are apparatus and methods for depositing materials by vapor deposition and plasma enhanced vapor deposition techniques, and more particularly a gas distribution assembly and vapor deposition chamber to deposit a material. The gas distribution assembly comprises a plurality of sections with each section containing a flow channel with passages extending from the flow channel to the processing region of a processing chamber.
    Type: Application
    Filed: December 19, 2013
    Publication date: June 26, 2014
    Inventors: Chien-Teh Kao, Mei Chang, Hyman Lam, Joel M. Huston, Xiaoxiong Yuan, Olkan Cuvalci
  • Publication number: 20140137961
    Abstract: In some embodiments, a modular chemical delivery system may include a plurality of gas delivery units directly and removably coupled to each other, wherein each gas delivery unit includes a body with a first volume, a plurality of gas sticks disposed in the first volume, wherein each of the plurality of gas sticks is configured to be coupled to at least one gas supply through one or more inlets in the body, a plurality of valves disposed in the first volume, each valve respectively disposed in line with a corresponding one of the at least one gas supply, at least one outlet conduit to deliver at least one process gas to one or more gas delivery zones in a process chamber, and an electrical controller disposed in the first volume and configured to control the plurality of gas sticks and the plurality of valves.
    Type: Application
    Filed: October 21, 2013
    Publication date: May 22, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: CHIEN-TEH KAO, MEI CHANG, HYMAN W. H. LAM, YU CHANG, JOEL M. HUSTON, OLKAN CUVALCI
  • Publication number: 20140076234
    Abstract: A multi-chamber processing system includes a transfer chamber, a first processing chamber outfitted to perform CVD, a second processing chamber, and a robot positioned to transfer substrates between the transfer chamber, the first processing chamber, and the second processing chamber. The second processing chamber may include one or a combination of a first electrode and a second electrode comprising a plasma cavity formed therein.
    Type: Application
    Filed: October 18, 2013
    Publication date: March 20, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Chien-Teh KAO, Jing-Pei Connie CHOU, Chiukin (Steven) LAI, Salvador P. UMOTOY, Joel M. HUSTON, Son TRINH, Mei CHANG, Xiaoxiong YUAN, Yu CHANG, Xinliang LU, Wei W. WANG, See-Eng PHAN
  • Patent number: 8343307
    Abstract: A method and apparatus for removing native oxides from a substrate surface is provided. In one embodiment, the apparatus for removing native oxides from a substrate surface includes a showerhead assembly. One embodiment of a showerhead assembly includes a hollow cylinder, a disc and an annular mounting flange. The hollow cylinder has a top wall, a bottom wall, an inner diameter wall and an outer diameter wall. The disc has a top surface and a lower surface. The top surface is coupled to the inner diameter wall. The lower surface is coupled to the bottom wall. The disc has a plurality of apertures connecting the lower surface to the top surface. The annular mounting flange extends from the outer diameter wall of the hollow cylinder. The mounting flange has an upper surface and a lower surface. The upper surface is coplanar with the top wall of the hollow cylinder. The lower surface having an elevation above the top surface of the disc.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: January 1, 2013
    Assignee: Applied Materials, Inc.
    Inventor: Joel M. Huston
  • Publication number: 20120267346
    Abstract: A method and apparatus for removing native oxides from a substrate surface is provided. In one aspect, the apparatus comprises a support assembly. In one embodiment, the support assembly includes a shaft coupled to a disk-shaped body. The disk-shaped body includes an upper surface, a lower surface and a cylindrical outer surface. A flange extends radially outward from the cylindrical outer surface. A fluid channel is formed in the disk-shaped body and is coupled to the heat transfer fluid conduit of the shaft. A plurality of grooves formed in the upper surface are coupled by a hole to the vacuum conduit of the shaft. A gas conduit formed through the disk-shaped body couples the gas conduit of the shaft to the cylindrical outer surface of the disk-shaped body.
    Type: Application
    Filed: April 26, 2012
    Publication date: October 25, 2012
    Inventors: Chien-Teh Kao, Joel M. Huston, Mei Chang, Xiaoxiong (John) Yuan
  • Publication number: 20120244704
    Abstract: A method for removing native oxides from a substrate surface is provided. In one embodiment, the method comprises positioning a substrate having an oxide layer into a processing chamber, exposing the substrate to a gas mixture while forming a volatile film on the substrate and maintaining the substrate at a temperature below 65° C., heating the substrate to a temperature of at least about 75° C. to sublimate the volatile film and remove the oxide layer, and depositing a first layer on the substrate after heating the substrate.
    Type: Application
    Filed: June 5, 2012
    Publication date: September 27, 2012
    Inventors: Chien-Teh KAO, Jing-Pei(Connie) CHOU, Chiukin(Steven) LAI, Sal UMOTOY, Joel M. HUSTON, Son TRINH, Mei CHANG, Xiaoxiong (John) YUAN, Yu CHANG, Xinliang LU, Wei W. WANG, See-Eng PHAN
  • Publication number: 20110223755
    Abstract: A method for removing native oxides from a substrate surface is provided. In one embodiment, the method comprises positioning a substrate having an oxide layer into a processing chamber, generating a plasma of a reactive species from a gas mixture within the processing chamber, exposing the substrate to the reactive species while forming a volatile film on the substrate and maintaining the substrate at a temperature below 65° C., heating the substrate to a temperature of at least about 75° C. to vaporize the volatile film and remove the oxide layer, and depositing a first layer on the substrate after heating the substrate.
    Type: Application
    Filed: May 20, 2011
    Publication date: September 15, 2011
    Inventors: CHIEN-TEH KAO, Jing-Pei(Connie) Chou, Chiukin(Steven) Lai, Sal Umotoy, Joel M. Huston, Son Trinh, Mei Chang, Xiaoxiong (John) Yuan, Yu Chang, Xinliang Lu, Wei W. Wang, See-Eng Phan
  • Patent number: 7910853
    Abstract: A method and apparatus for controlling power output of a capacitatively-coupled plasma are provided. A detector is disposed on the power delivery conduit carrying power to one electrode to detect fluctuations in power output to the electrode. The detector is coupled to a signal generator, which converts the RF input signal to a constant control signal. A controller adjusts power input to the RF generator by comparing the control signal to a reference.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: March 22, 2011
    Assignee: Applied Materials, Inc
    Inventors: David T. Or, Yu Chang, William Kuang, Joel M. Huston, Chien-Teh Kao, Mei Chang
  • Patent number: 7767024
    Abstract: In one embodiment, a method for removing native oxides from a substrate surface is provided which includes supporting a substrate containing silicon oxide within a processing chamber, generating a plasma of reactive species from a gas mixture within the processing chamber, cooling the substrate to a first temperature of less than about 65° C. within the processing chamber, and directing the reactive species to the cooled substrate to react with the silicon oxide thereon while forming a film on the substrate. The film usually contains ammonium hexafluorosilicate. The method further provides positioning the substrate in close proximity to a gas distribution plate, and heating the substrate to a second temperature of about 100° C. or greater within the processing chamber to sublimate or remove the film. The gas mixture may contain ammonia, nitrogen trifluoride, and a carrier gas.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: August 3, 2010
    Assignee: Appplied Materials, Inc.
    Inventors: Chien-Teh Kao, Jing-Pei (Connie) Chou, Chiukin (Steven) Lai, Sal Umotoy, Joel M. Huston, Son Trinh, Mei Chang, Xiaoxiong (John) Yuan, Yu Chang, Xinliang Lu, Wei W. Wang, See-Eng Phan
  • Publication number: 20090218324
    Abstract: A method and apparatus for controlling power output of a capacitatively-coupled plasma are provided. A detector is disposed on the power delivery conduit carrying power to one electrode to detect fluctuations in power output to the electrode. The detector is coupled to a signal generator, which converts the RF input signal to a constant control signal. A controller adjusts power input to the RF generator by comparing the control signal to a reference.
    Type: Application
    Filed: February 28, 2008
    Publication date: September 3, 2009
    Inventors: David T. Or, Yu Chang, William Kuang, Joel M. Huston, Chien-Teh Kao, Mei Chang
  • Publication number: 20090111280
    Abstract: A method for removing native oxides from a substrate surface is provided. In one embodiment, the method comprises positioning a substrate having an oxide layer into a processing chamber, generating a plasma of a reactive species from a gas mixture within the processing chamber, exposing the substrate to the reactive species while forming a volatile film on the substrate and maintaining the substrate at a temperature below 65° C., heating the substrate to a temperature of at least about 75° C. to vaporize the volatile film and remove the oxide layer, and depositing a first layer on the substrate after heating the substrate.
    Type: Application
    Filed: December 4, 2008
    Publication date: April 30, 2009
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Chien-Teh Kao, Jing-Pei (Connie) Chou, Chiukin (Steven) Lai, Sal Umotoy, Joel M. Huston, Son Trinh, Mei Chang, Xiaoxiong (John) Yuan, Yu Chang, Xinliang Lu, Wei W. Wang, See-Eng Phan
  • Patent number: 7520957
    Abstract: A lid assembly for semiconductor processing is provided. In at least one embodiment, the lid assembly includes a first electrode comprising an expanding section that has a gradually increasing inner diameter. The lid assembly also includes a second electrode disposed opposite the first electrode. A plasma cavity is defined between the inner diameter of the expanding section of the first electrode and a first surface of the second electrode.
    Type: Grant
    Filed: May 24, 2005
    Date of Patent: April 21, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Chien-Teh Kao, Jing-Pei (Connie) Chou, Chiukin (Steven) Lai, Sal Umotoy, Joel M. Huston, Son Trinh, Mei Chang, Xiaoxiong (John) Yuan, Yu Chang, Xinliang Lu, Wei W. Wang, See-Eng Phan
  • Publication number: 20090095334
    Abstract: A method and apparatus for removing native oxides from a substrate surface is provided. In one embodiment, the apparatus for removing native oxides from a substrate surface includes a showerhead assembly. One embodiment of a showerhead assembly includes a hollow cylinder, a disc and an annular mounting flange. The hollow cylinder has a top wall, a bottom wall, an inner diameter wall and an outer diameter wall. The disc has a top surface and a lower surface. The top surface is coupled to the inner diameter wall. The lower surface is coupled to the bottom wall. The disc has a plurality of apertures connecting the lower surface to the top surface. The annular mounting flange extends from the outer diameter wall of the hollow cylinder. The mounting flange has an upper surface and a lower surface. The upper surface is coplanar with the top wall of the hollow cylinder. The lower surface having an elevation above the top surface of the disc.
    Type: Application
    Filed: October 23, 2008
    Publication date: April 16, 2009
    Inventor: Joel M. Huston
  • Publication number: 20090095621
    Abstract: A method and apparatus for removing native oxides from a substrate surface is provided. In one aspect, the apparatus comprises a support assembly. In one embodiment, the support assembly includes a shaft coupled to a disk-shaped body. The shaft has a vacuum conduit, a heat transfer fluid conduit and a gas conduit formed therein. The disk-shaped body includes an upper surface, a lower surface and a cylindrical outer surface. A thermocouple is embedded in the disk-shaped body. A flange extends radially outward from the cylindrical outer surface, wherein the lower surface of the disk-shaped body comprises one side of the flange. A fluid channel is formed in the disk-shaped body proximate the flange and lower surface. The fluid channel is coupled to the heat transfer fluid conduit of the shaft. A plurality of grooves are formed in the upper surface of the disk-shaped body, and are coupled by a hole in the disk-shaped body to the vacuum conduit of the shaft.
    Type: Application
    Filed: October 23, 2008
    Publication date: April 16, 2009
    Inventors: Chien-Teh Kao, Joel M. Huston, Mei Chang, Xiaoxiong (John) Yuan
  • Publication number: 20080268645
    Abstract: In one embodiment, a method for removing native oxides from a substrate surface is provided which includes supporting a substrate containing silicon oxide within a processing chamber, generating a plasma of reactive species from a gas mixture within the processing chamber, cooling the substrate to a first temperature of less than about 65° C. within the processing chamber, and directing the reactive species to the cooled substrate to react with the silicon oxide thereon while forming a film on the substrate. The film usually contains ammonium hexafluorosilicate. The method further provides positioning the substrate in close proximity to a gas distribution plate, and heating the substrate to a second temperature of about 100° C. or greater within the processing chamber to sublimate or remove the film. The gas mixture may contain ammonia, nitrogen trifluoride, and a carrier gas.
    Type: Application
    Filed: June 6, 2008
    Publication date: October 30, 2008
    Inventors: CHIEN-TEH KAO, Jing-Pei (Connie) Chou, Chiukin (Steven) Lai, Sal Umotoy, Joel M. Huston, Son Trinh, Mei Chang, Xiaoxiong (John) Yuan, Yu Chang, Xinliang Lu, Wei W. Wang, See-Eng Phan
  • Patent number: 7396480
    Abstract: A method for removing native oxides from a substrate surface is provided. In at least one embodiment, the method includes supporting the substrate surface in a vacuum chamber and generating reactive species from a gas mixture within the chamber. The substrate surface is then cooled within the chamber and the reactive species are directed to the cooled substrate surface to react with the native oxides thereon and form a film on the substrate surface. The substrate surface is then heated within the chamber to vaporize the film.
    Type: Grant
    Filed: May 24, 2005
    Date of Patent: July 8, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Chien-Teh Kao, Jing-Pei (Connie) Chou, Chiukin (Steven) Lai, Sal Umotoy, Joel M. Huston, Son Trinh, Mei Chang, Xiaoxiong (John) Yuan, Yu Chang, Xinliang Lu, Wei W. Wang, See-Eng Phan