Patents by Inventor Joung-Wei Liou

Joung-Wei Liou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150048488
    Abstract: Semiconductor devices, methods of manufacture thereof, and IMD structures are disclosed. In some embodiments, a semiconductor device includes an adhesion layer disposed over a workpiece. The adhesion layer has a dielectric constant of about 4.0 or less and includes a substantially homogeneous material. An insulating material layer is disposed over the adhesion layer. The insulating material layer has a dielectric constant of about 2.6 or less. The adhesion layer and the insulating material layer comprise an IMD structure.
    Type: Application
    Filed: August 15, 2013
    Publication date: February 19, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Yun Peng, Keng-Chu Lin, Joung-Wei Liou, Kuang-Yuan Hsu
  • Publication number: 20150041964
    Abstract: Methods and apparatus for a low k dielectric layer of porous SiCOH. A method includes placing a semiconductor substrate into a vapor deposition chamber; introducing reactive gases into the vapor deposition chamber to form a dielectric film comprising SiCOH and a decomposable porogen; depositing the dielectric film to have a ratio of Si—CH3 to SiOnetwork bonds of less than or equal to 0.25; and performing a cure for a cure time to remove substantially all of the porogen from the dielectric film. In one embodiment the porogen comprises a cyclic hydrocarbon. The porogen may be UV curable. In embodiments, different lowered Si—CH3 to SiOnetwork ratios for the deposition of the dielectric film are disclosed. An apparatus of a semiconductor device including the low k dielectric layers is disclosed.
    Type: Application
    Filed: October 24, 2014
    Publication date: February 12, 2015
    Inventors: Yu-Yun Peng, Keng-Chu Lin, Joung-Wei Liou, Hui-Chun Yang
  • Publication number: 20150021770
    Abstract: A method of fabricating an interconnect structure on a wafer and an interconnect structure are provided. A dielectric layer is provided on the wafer, with the dielectric layer having a recess therein. A silicon (Si) layer is deposited in the recess. An interconnect is formed by providing a barrier layer and a conductive layer in the recess over the Si layer. The Si layer has a density that prevents or substantially prevents the barrier layer from moving away from the conductive layer and towards the dielectric layer during subsequent processing of the interconnect structure.
    Type: Application
    Filed: July 16, 2013
    Publication date: January 22, 2015
    Inventors: JOUNG-WEI LIOU, KENG-CHU LIN
  • Publication number: 20150021779
    Abstract: A method of fabricating an interconnect structure on a wafer and an interconnect structure are provided. A dielectric layer is provided on the wafer. An interconnect is formed by etching a recess into the dielectric layer, where the etching utilizes a hard mask that includes a first layer deposited over the dielectric layer. The interconnect is planarized using a chemical mechanical polishing (CMP) process, where the first layer remains on the dielectric layer at a completion of the CMP process. The first layer or a portion of the first layer is transformed into a nitride layer or an oxide layer after the CMP process.
    Type: Application
    Filed: July 19, 2013
    Publication date: January 22, 2015
    Inventors: JOUNG-WEI LIOU, HAN-TI HSIAW, KENG-CHU LIN
  • Publication number: 20150011084
    Abstract: A method of making a semiconductor device including forming a first adhesion layer over a substrate. The method further includes forming a second adhesion layer over the first adhesion layer, where the second adhesion layer is formed using an inert gas with a first flow rate under a first RF power. Additionally, the method includes forming a low-k dielectric layer over the second adhesion layer, where the low-k dielectric layer is formed using the inert gas with a second flow rate under a second RF power under at least one of the following two conditions: 1) the second flow rate is different from the first flow rate; or 2) the second RF power is different from the first RF power. Furthermore, the method includes forming an opening in the dielectric layer, the second adhesion layer, and the first adhesion layer. Additionally, the method includes forming a conductor in the opening.
    Type: Application
    Filed: September 23, 2014
    Publication date: January 8, 2015
    Inventors: Po-Cheng SHIH, Yu-Yun PENG, Chia Cheng CHOU, Joung-Wei LIOU
  • Patent number: 8927420
    Abstract: Among other things, one or more support structures and techniques for forming such support structures within semiconductor devices are provided. The support structure comprises an oxide infused silicon layer that is formed within a trench of a dielectric layer on a substrate of a semiconductor device. The oxide infused silicon layer results from a silicon layer that is exposed to oxide during an ultraviolet (UV) curing process. The oxide infused silicon layer is configured to support a barrier layer against a conductive structure formed on the barrier layer within the trench. In this way, the support structure provides pressure against the barrier layer so that the barrier layer substantially maintains contact with the conductive structure, to promote improved performance and reliability of the conductive structure.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: January 6, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Joung-Wei Liou, Keng-Chu Lin
  • Publication number: 20150002017
    Abstract: A gas diffuser unit for a process chamber includes at least one controllable diffuser, a power source, and a controller. The at least one controllable diffuser is configured to generate controllable forces acting in various directions on a gaseous material in a flow of the gaseous material introduced into the process chamber, to spread the gaseous material inside the process chamber. The power source is coupled to the at least one controllable diffuser, and configured to supply power to the at least one controllable diffuser to generate the controllable forces. The controller is coupled to the power source and configured to control the power supplied by the power source to the at least one controllable diffuser.
    Type: Application
    Filed: June 26, 2013
    Publication date: January 1, 2015
    Inventors: Chien Kuo HUANG, Shih-Wen HUANG, Joung-Wei LIOU, Chia-I SHEN, Fei-Fan CHEN
  • Patent number: 8889567
    Abstract: Methods and apparatus for a low k dielectric layer of porous SiCOH. A method includes placing a semiconductor substrate into a vapor deposition chamber; introducing reactive gases into the vapor deposition chamber to form a dielectric film comprising SiCOH and a decomposable porogen; depositing the dielectric film to have a ratio of Si—CH3 to SiOnetwork bonds of less than or equal to 0.25; and performing a cure for a cure time to remove substantially all of the porogen from the dielectric film. In one embodiment the porogen comprises a cyclic hydrocarbon. The porogen may be UV curable. In embodiments, different lowered Si—CH3 to SiOnetwork ratios for the deposition of the dielectric film are disclosed. An apparatus of a semiconductor device including the low k dielectric layers is disclosed.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: November 18, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Yun Peng, Keng-Chu Lin, Joung-Wei Liou, Hui-Chun Yang
  • Patent number: 8877083
    Abstract: A Ultra-Violet (UV) treatment is performed on an exposed surface of a low-k dielectric layer and an exposed surface of a metal line. After the UV treatment, an organo-metallic soak process is performed on the exposed surface of the low-k dielectric layer and the exposed surface of the metal line. The organo-metallic soak process is performed using a process gas including a metal bonded to an organic group.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: November 4, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Cheng Chou, Mei-Ling Chen, Hui-Chun Yang, Po-Cheng Shih, Joung-Wei Liou, Shwang-Ming Jeng
  • Patent number: 8853831
    Abstract: A interconnect structure includes a conductive layer formed in a dielectric layer. An adhesion layer is formed between the dielectric layer and a substrate. The adhesion layer has a carbon content ratio greater than a carbon content ratio of the dielectric layer.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: October 7, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Po-Cheng Shih, Yu-Yun Peng, Chia Cheng Chou, Joung-Wei Liou
  • Patent number: 8853858
    Abstract: An integrated circuit structure including reflective metal pads is provided. The integrated circuit structure includes a semiconductor substrate; a first low-k dielectric layer overlying the semiconductor substrate, wherein the first low-k dielectric layer is a top low-k dielectric layer; a second low-k dielectric layer immediately underlying the first low-k dielectric layer; and a reflective metal pad in the second low-k dielectric layer.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: October 7, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Joung-Wei Liou, Keng-Chu Lin, Shwang-Ming Jeng
  • Patent number: 8846528
    Abstract: A dielectric layer having features etched thereon and a low dielectric constant, and that is carried by a semiconductor substrate. The etched dielectric layer is modified so its surface energy is reduced by at least one of: (a) applying thermal energy to the layer to cause the layer temperature to be between 100 C and 400 C; (b) irradiating the layer with electromagnetic energy; and/or (c) irradiating the layer with free ions.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: September 30, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Joung-Wei Liou, Chung-Chi Ko, Chia-Cheng Chou, Keng-Chu Lin
  • Publication number: 20140264870
    Abstract: In a method for forming a semiconductor device, an interconnect structure over a semiconductor substrate is provided. The interconnect structure includes a first dielectric layer and a conductive pattern inside a trench in the first dielectric layer. An etch stop layer (ESL) is formed over the interconnect structure. An interface layer comprising elemental silicon is deposited over the ESL. A second dielectric layer is then formed over the interface layer.
    Type: Application
    Filed: May 9, 2013
    Publication date: September 18, 2014
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shiauhan WU, Joung-Wei LIOU, Han-Ti HSIAW
  • Publication number: 20140217589
    Abstract: Among other things, one or more support structures and techniques for forming such support structures within semiconductor devices are provided. The support structure comprises an oxide infused silicon layer that is formed within a trench of a dielectric layer on a substrate of a semiconductor device. The oxide infused silicon layer results from a silicon layer that is exposed to oxide during an ultraviolet (UV) curing process. The oxide infused silicon layer is configured to support a barrier layer against a conductive structure formed on the barrier layer within the trench. In this way, the support structure provides pressure against the barrier layer so that the barrier layer substantially maintains contact with the conductive structure, to promote improved performance and reliability of the conductive structure.
    Type: Application
    Filed: February 4, 2013
    Publication date: August 7, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Joung-Wei Liou, Keng-Chu Lin
  • Publication number: 20140141611
    Abstract: A Ultra-Violet (UV) treatment is performed on an exposed surface of a low-k dielectric layer and an exposed surface of a metal line. After the UV treatment, an organo-metallic soak process is performed on the exposed surface of the low-k dielectric layer and the exposed surface of the metal line. The organo-metallic soak process is performed using a process gas including a metal bonded to an organic group.
    Type: Application
    Filed: November 16, 2012
    Publication date: May 22, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Cheng Chou, Mei-Ling Chen, Hui-Chun Yang, Po-Cheng Shih, Joung-Wei Liou, Shwang-Ming Jeng
  • Publication number: 20130277853
    Abstract: Semiconductor devices, methods of manufacture thereof, and methods of forming conductive features thereof are disclosed. A semiconductor device includes an insulating material layer disposed over a workpiece. The insulating material layer includes a silicon-containing material comprising about 13% or greater of carbon (C). A conductive feature is disposed within the insulating material layer. The conductive feature includes a capping layer disposed on a top surface thereof.
    Type: Application
    Filed: April 20, 2012
    Publication date: October 24, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hui-Chun Yang, Mei-Ling Chen, Keng-Chu Lin, Joung-Wei Liou
  • Publication number: 20130273732
    Abstract: An Active Energy Assist (AEA) baking chamber includes an AEA light source assembly and a heater pedestal. The AEA baking chamber further includes a controller for controlling a power input to the AEA light source assembly and a power input to the heater pedestal. A method of forming interconnects on a substrate includes etching a substrate and wet cleaning the etched substrate. The method further includes active energy assist (AEA) baking the substrate after the wet-cleaning. The AEA baking includes placing the substrate on a heater pedestal in an AEA chamber, exposing the substrate to light having a wavelength equal to or greater than 400 nm, wherein said light is emitted by a light source and controlling the light source and the heater pedestal using a controller.
    Type: Application
    Filed: June 11, 2013
    Publication date: October 17, 2013
    Inventors: Chung-Chi KO, Chia Cheng CHOU, Keng-Chu LIN, Joung-Wei LIOU, Shwang-Ming JENG, Mei-Ling CHEN
  • Publication number: 20130256888
    Abstract: A interconnect structure includes a first etch stop layer over a substrate, a dielectric layer over the first etch stop layer, a conductor in the dielectric layer, and a second etch stop layer over the dielectric layer. The dielectric layer contains carbon and has a top portion and a bottom potion. A difference of C content in the top portion and the bottom potion is less than 2 at %. An oxygen content in a surface of the conductor is less than about 1 at %.
    Type: Application
    Filed: May 18, 2012
    Publication date: October 3, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Po-Cheng SHIH, Hui-Chun YANG, Chih-Hung SUN, Joung-Wei LIOU
  • Publication number: 20130256903
    Abstract: A interconnect structure includes a conductive layer formed in a dielectric layer. An adhesion layer is formed between the dielectric layer and a substrate. The adhesion layer has a carbon content ratio greater than a carbon content ratio of the dielectric layer.
    Type: Application
    Filed: April 30, 2012
    Publication date: October 3, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Po-Cheng SHIH, Yu-Yun PENG, Chia Cheng CHOU, Joung-Wei LIOU
  • Patent number: 8481412
    Abstract: A method of and apparatus for forming interconnects on a substrate includes etching patterns in ultra-low k dielectric and removing moisture from the ultra-low k dielectric using active energy assist baking. During active energy assist baking, the ultra-low k dielectric is heated and exposed to light having only wavelengths greater than 400 nm for about 1 to about 20 minutes at a temperature of about 300 to about 400 degrees Celsius. The active energy assist baking is performed after wet-cleaning or after chemical mechanical polishing, or both.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: July 9, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Chi Ko, Chia Cheng Chou, Keng-Chu Lin, Joung-Wei Liou, Shwang-Ming Jeng, Mei-Ling Chen