Patents by Inventor Jun-Fei Zheng

Jun-Fei Zheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040017975
    Abstract: Waveguide photodetector apparatus and methods employing an optical waveguide having a tapered section, which may be horizontally tapered, vertically tapered, or both. The apparatus also includes a photodetector with an intrinsic region, which in one embodiment may be tapered in a manner corresponding to a horizontal taper of the tapered section. The photodetector is arranged adjacent the tapered section such that the intrinsic region is coupled to the optical waveguide via an evanescent wave of a guided lightwave. The tapered section serves to force energy carried in the guided lightwave from the optical waveguide into the intrinsic region of the photodetector via the evanescent wave, thereby shortening the photodetector length.
    Type: Application
    Filed: July 23, 2002
    Publication date: January 29, 2004
    Applicant: Intel Corporation
    Inventors: Jun-Fei Zheng, Paul Davids
  • Publication number: 20030151074
    Abstract: Insulated gate field effect transistors having gate electrodes with at least two layers of materials provide gate electrode work function values that are similar to those of doped polysilicon, eliminate the poly depletion effect and also substantially prevent impurity diffusion into the gate dielectric. Bi-layer stacks of relatively thick Al and thin TiN for n-channel FETs and bi-layer stacks of relatively thick Pd and thin TiN, or relatively thick Pd and thin TaN for p-channel FETs are disclosed. Varying the thickness of the thin TiN or TaN layers between a first and second critical thickness may be used to modulate the work function of the gate electrode and thereby obtain the desired trade-off between channel doping and drive currents in FETs.
    Type: Application
    Filed: March 7, 2003
    Publication date: August 14, 2003
    Inventors: Jun-Fei Zheng, Brian Doyle, Gang Bai, Chunlin Liang
  • Publication number: 20030113947
    Abstract: An electro-optic semiconductor package and fabrication method provides enhanced performance. An integrated circuit (IC) having one or more IC contact pads is provided, where the IC contact pads are connected to an IC on the IC wafer. An intermediate wafer having one or more intermediate contact pads is provided, where the intermediate contact pads are connected to an electro-optic arrangement on the intermediate wafer. The method further provides for direct copper bonding the IC contact pads to adjacent intermediate contact pads such that an electro-optic semiconductor package results.
    Type: Application
    Filed: December 19, 2001
    Publication date: June 19, 2003
    Inventors: Gilroy J. Vandentop, Jun-Fei Zheng
  • Patent number: 6537706
    Abstract: A method for making a photolithographic mask. The method comprises forming a film on a substrate that deforms the substrate, and applying a deformation reducing agent to the substrate to reduce the amount of deformation that the film caused. In a preferred embodiment, the deformation reducing agent comprises one or more films, which are formed on one side of the substrate, that balance the substrate deformation effect of one or more films that are deposited on the other side of the substrate. The film or films that constitute the deformation reducing agent may be similar to, or different from, an absorption film and/or any other films deposited on the substrate or on the absorption film.
    Type: Grant
    Filed: March 14, 2000
    Date of Patent: March 25, 2003
    Assignee: Intel Corporation
    Inventors: Qing Ma, Jin Lee, Jun Fei Zheng, Giang Dao
  • Publication number: 20020179852
    Abstract: A method and apparatus to remove contamination and control electrostatic discharge in-situ in a semiconductor device manufacture process. In an embodiment, the method includes providing a reticle having first and second planar surfaces into a chamber. A circuit pattern of opaque material may be disposed on the first planar surface of the reticle. The method further includes irradiating the reticle using an ultraviolet light radiation beam to remove contamination disposed on the first and second planar surfaces of the reticle and to neutralize static electricity accumulated by the reticle.
    Type: Application
    Filed: May 8, 2001
    Publication date: December 5, 2002
    Inventors: Jun Fei Zheng, Giang Dao.
  • Publication number: 20020106858
    Abstract: Insulated gate field effect transistors having gate electrodes with at least two layers of materials provide gate electrode work function values that are similar to those of doped polysilicon, eliminate the poly depletion effect and also substantially prevent impurity diffusion into the gate dielectric. Bi-layer stacks of relatively thick Al and thin TiN for n-channel FETs and bi-layer stacks of relatively thick Pd and thin TiN, or relatively thick Pd and thin TaN for p-channel FETs are disclosed. Varying the thickness of the thin TiN or TaN layers between a first and second critical thickness may be used to modulate the work function of the gate electrode and thereby obtain the desired trade-off between channel doping and drive currents in FETs.
    Type: Application
    Filed: February 6, 2002
    Publication date: August 8, 2002
    Inventors: Jun-Fei Zheng, Brian Doyle, Gang Bai, Chunlin Liang
  • Patent number: 6373111
    Abstract: Insulated gate field effect transistors having gate electrodes with at least two layers of materials provide gate electrode work function values that are similar to those of doped polysilicon, eliminate the poly depletion effect and also substantially prevent impurity diffusion into the gate dielectric. Bi-layer stacks of relatively thick Al and thin TiN for n-channel FETs and bi-layer stacks of relatively thick Pd and thin TiN, or relatively thick Pd and thin TaN for p-channel FETs are disclosed. Varying the thickness of the thin TiN or TaN layers between a first and second critical thickness may be used to modulate the work function of the gate electrode and thereby obtain the desired trade-off between channel doping and drive currents in FETs.
    Type: Grant
    Filed: November 30, 1999
    Date of Patent: April 16, 2002
    Assignee: Intel Corporation
    Inventors: Jun-Fei Zheng, Brian Doyle, Gang Bai, Chunlin Liang