Patents by Inventor Kaan Oguz

Kaan Oguz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11386951
    Abstract: A MTJ device includes a free (storage) magnet and fixed (reference) magnet between first and second electrodes, and a programmable booster between the free magnet and one of the electrodes. The booster has a magnetic material layer. The booster may further have an interface layer that supports the formation of a skyrmion spin texture, or a stable ferromagnetic domain, within the magnetic material layer. A programming current between two circuit nodes may be employed to set a position of the skyrmion or magnetic domain within the magnetic material layer to be more proximal to, or more distal from, the free magnet. The position of the skyrmion or magnetic domain to the MTJ may modulate TMR ratio of the MTJ device. The TMR ratio modulation may be employed to discern more than two states of the MTJ device. Such a multi-level device may, for example, be employed to store 2 bits/cell.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: July 12, 2022
    Assignee: Intel Corporation
    Inventors: Kevin O'Brien, Brian Doyle, Kaan Oguz, Noriyuki Sato, Charles Kuo, Mark Doczy
  • Patent number: 11374164
    Abstract: Embodiments herein relate to a system, apparatus, and/or process for producing a spin orbit torque (SOT) electrode that includes a first layer with a first side to couple with a free layer of a magnetic tunnel junction (MTJ) and a second layer coupled with a second side of the first layer opposite the first side, where a value of an electrical resistance in the first SOT layer is lower than a value of an electrical resistance in the second SOT layer and where a current applied to the SOT electrode is to cause current to preferentially flow in the first SOT layer to cause a magnetic polarization of the free layer to change directions. During production of the SOT electrode, the second layer may act as an etch stop.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: June 28, 2022
    Assignee: Intel Corporation
    Inventors: Tanay Gosavi, Sasikanth Manipatruni, Chia-Ching Lin, Kaan Oguz, Christopher Wiegand, Angeline Smith, Noriyuki Sato, Kevin O'Brien, Benjamin Buford, Ian Young, Md Tofizur Rahman
  • Publication number: 20220199758
    Abstract: Capacitors with a carbon-based electrode layer in contact with a ferroelectric insulator. The insulator may be a perovskite oxide. Low reactivity of the carbon-based electrode may improve stability of a ferroelectric capacitor. A carbon-based electrode layer may be predominantly carbon and have a low electrical resistivity. A carbon-based electrode layer may be the only layer of an electrode, or it may be a barrier between the insulator and another electrode layer. Both electrodes of a capacitor may include a carbon-based electrode layer, or a carbon-based electrode layer may be included in only one electrode.
    Type: Application
    Filed: December 23, 2020
    Publication date: June 23, 2022
    Applicant: Intel Corporation
    Inventors: Arnab Sen Gupta, Jason C. Retasket, Matthew V. Metz, I-Cheng Tung, Chia-Ching Lin, Sou-Chi Chang, Kaan Oguz, Uygar E. Avci, Edward Johnson
  • Publication number: 20220199839
    Abstract: Embodiments disclosed herein include semiconductor devices with Schottky diodes in a back end of line stack. In an embodiment, a semiconductor device comprises a semiconductor layer, where transistor devices are provided in the semiconductor layer, and a back end stack over the semiconductor layer. In an embodiment, a diode is in the back end stack. In an embodiment, the diode comprises a first electrode, a semiconductor region over the first electrode, and a second electrode over the semiconductor region. In an embodiment, a first interface between the first electrode and the semiconductor region is an ohmic contact, and a second interface between the semiconductor region and the second electrode is a Schottky contact.
    Type: Application
    Filed: December 23, 2020
    Publication date: June 23, 2022
    Inventors: Arnab SEN GUPTA, Urusa ALAAN, Justin WEBER, Charles C. KUO, Yu-Jin CHEN, Kaan OGUZ, Matthew V. METZ, Abhishek A. SHARMA, Prashant MAJHI, Brian S. DOYLE, Van H. LE
  • Publication number: 20220199801
    Abstract: Embodiments disclosed herein include a semiconductor devices with back end of line (BEOL) transistor devices. In an embodiment, a semiconductor device comprises a semiconductor substrate and a BEOL stack over the semiconductor substrate. In an embodiment, a field effect transistor (FET) is embedded in the BEOL stack. In an embodiment, the FET comprises a channel, a gate dielectric over the channel, where the gate dielectric is single crystalline, a gate electrode over the gate dielectric, and a source electrode and a drain electrode passing through the gate dielectric to contact the channel.
    Type: Application
    Filed: December 23, 2020
    Publication date: June 23, 2022
    Inventors: Prashant MAJHI, Abhishek A. SHARMA, Charles C. KUO, Brian S. DOYLE, Urusa ALAAN, Van H. LE, Elijah V. KARPOV, Kaan OGUZ, Arnab SEN GUPTA
  • Publication number: 20220199609
    Abstract: Embodiments disclosed herein include semiconductor devices with electrostatic discharge (ESD) protection of the transistor devices. In an embodiment, a semiconductor device comprises a semiconductor substrate, where a transistor device is provided on the semiconductor substrate. In an embodiment, the semiconductor device further comprises a stack of routing layers over the semiconductor substrate, and a diode in the stack of routing layers. In an embodiment, the diode is configured to provide electrostatic discharge (ESD) protection to the transistor device.
    Type: Application
    Filed: December 23, 2020
    Publication date: June 23, 2022
    Inventors: Urusa ALAAN, Abhishek A. SHARMA, Charles C. KUO, Benjamin ORR, Nicholas THOMSON, Ayan KAR, Arnab SEN GUPTA, Kaan OGUZ, Brian S. DOYLE, Prashant MAJHI, Van H. LE, Elijah V. KARPOV
  • Publication number: 20220199519
    Abstract: Metal insulator metal capacitors are described. In an example, a metal-insulator-metal (MIM) capacitor includes a first electrode plate, and a first capacitor dielectric on the first electrode plate. The first capacitor dielectric is or includes a perovskite high-k dielectric material. A second electrode plate is on the first capacitor dielectric and has a portion over and parallel with the first electrode plate, and a second capacitor dielectric is on the second electrode plate. A third electrode plate is on the second capacitor dielectric and has a portion over and parallel with the second electrode plate.
    Type: Application
    Filed: December 21, 2020
    Publication date: June 23, 2022
    Inventors: Chia-Ching LIN, Sou-Chi CHANG, Kaan OGUZ, I-Cheng TUNG, Arnab SEN GUPTA, Ian A. YOUNG, Uygar E. AVCI, Matthew V. METZ, Ashish Verma PENUMATCHA, Anandi ROY
  • Publication number: 20220199756
    Abstract: Metal insulator metal capacitors or backend transistors having epitaxial oxides are described. In a first example, metal-insulator-metal (MIM) capacitor includes a first electrode plate. A capacitor dielectric is on the first electrode plate. The capacitor dielectric includes a single crystalline oxide material. A second electrode plate is on the capacitor dielectric, the second electrode plate having a portion over and parallel with the first electrode plate. In a second example, a transistor includes a gate electrode above a substrate. A gate dielectric above and on the gate electrode. The gate dielectric includes a single crystalline oxide material. A channel material layer is on the single crystalline oxide material. Source or drain contacts are on the channel material layer.
    Type: Application
    Filed: December 23, 2020
    Publication date: June 23, 2022
    Inventors: I-Cheng TUNG, Kaan OGUZ, Chia-Ching LIN, Sou-Chi CHANG, Matthew V. METZ, Uygar E. AVCI
  • Patent number: 11367749
    Abstract: A spin orbit torque (SOT) memory device includes a magnetic tunnel junction (MTJ) device with one end coupled with a first electrode and an opposite end coupled with a second electrode including a spin orbit torque material. In an embodiment, a second electrode is coupled with the free magnet and coupled between a pair of interconnect line segments. The second electrode and the pair of interconnect line segments include a spin orbit torque material. The second electrode has a conductive path cross-section that is smaller than a cross section of the conductive path in at least one of the interconnect line segments.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: June 21, 2022
    Assignee: Intel Corporation
    Inventors: Noriyuki Sato, Angeline Smith, Tanay Gosavi, Sasikanth Manipatruni, Kaan Oguz, Kevin O'Brien, Tofizur Rahman, Gary Allen, Atm G. Sarwar, Ian Young, Hui Jae Yoo, Christopher Wiegand, Benjamin Buford
  • Patent number: 11362263
    Abstract: A perpendicular spin orbit torque (SOT) memory device includes an electrode having a spin orbit coupling material and a magnetic tunnel junction (MTJ) device on a portion of the electrode. The electrode has a first SOC layer and a second SOC layer on a portion of the first SOC layer, where at least a portion of the first SOC layer at an interface with the second SOC layer includes oxygen.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: June 14, 2022
    Assignee: Intel Corporation
    Inventors: Noriyuki Sato, Tanay Gosavi, Justin Brockman, Sasikanth Manipatruni, Kaan Oguz, Kevin O'Brien, Christopher Wiegand, Angeline Smith, Tofizur Rahman, Ian Young
  • Publication number: 20220181433
    Abstract: Disclosed herein are capacitors including built-in electric fields, as well as related devices and assemblies. In some embodiments, a capacitor may include a top electrode region, a bottom electrode region, and a dielectric region between and in contact with the top electrode region and the bottom electrode region, wherein the dielectric region includes a perovskite material, and the top electrode region has a different material structure than the bottom electrode region.
    Type: Application
    Filed: December 9, 2020
    Publication date: June 9, 2022
    Applicant: Intel Corporation
    Inventors: Sou-Chi Chang, Chia-Ching Lin, Kaan Oguz, I-Cheng Tung, Uygar E. Avci, Matthew V. Metz, Ashish Verma Penumatcha, Ian A. Young, Arnab Sen Gupta
  • Patent number: 11348970
    Abstract: A spin orbit torque (SOT) memory device includes an SOT electrode on an upper end of an MTJ device. The MTJ device includes a free magnet, a fixed magnet and a tunnel barrier between the free magnet and the fixed magnet and is coupled with a conductive interconnect at a lower end of the MTJ device. The SOT electrode has a footprint that is substantially the same as a footprint of the MTJ device. The SOT device includes a first contact and a second contact on an upper surface of the SOT electrode. The first contact and the second contact are laterally spaced apart by a distance that is no greater than a length of the MTJ device.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: May 31, 2022
    Assignee: Intel Corporation
    Inventors: Kevin O'Brien, Benjamin Buford, Kaan Oguz, Noriyuki Sato, Charles Kuo, Mark Doczy
  • Publication number: 20220140230
    Abstract: An apparatus is provided which comprises: a magnetic junction including: a stack of structures including: a first structure comprising a magnet with an unfixed perpendicular magnetic anisotropy (PMA) relative to an x-y plane of a device, wherein the first structure has a first dimension along the x-y plane and a second dimension in the z-plane, wherein the second dimension is substantially greater than the first dimension. The magnetic junction includes a second structure comprising one of a dielectric or metal; and a third structure comprising a magnet with fixed PMA, wherein the third structure has an anisotropy axis perpendicular to the plane of the device, and wherein the third structure is adjacent to the second structure such that the second structure is between the first and third structures; and an interconnect adjacent to the third structure, wherein the interconnect comprises a spin orbit material.
    Type: Application
    Filed: January 18, 2022
    Publication date: May 5, 2022
    Applicant: Intel Corporation
    Inventors: Sasikanth MANIPATRUNI, Kaan OGUZ, Chia-Ching LIN, Christopher WIEGAND, Tanay GOSAVI, Ian YOUNG
  • Publication number: 20220123206
    Abstract: An apparatus is provided which comprises: a stack comprising a magnetoelectric (ME such as BiFeO3, (LaBi)FeO3, LuFeO3, PMN-PT, PZT, AlN, SmBiFeO3, Cr2O3, etc.) material and a transition metal dichalcogenide (TMD such as MoS2, MoSe2, WS2, WSe2, PtS2, PtSe2, WTe2, MoTe2, graphene, etc.); a magnet adjacent to a first portion of the TMD of the stack; a first interconnect adjacent to the magnet; a second interconnect adjacent to the ME material of the stack; and a third interconnect adjacent to a second portion of the TMD of the stack.
    Type: Application
    Filed: December 29, 2021
    Publication date: April 21, 2022
    Applicant: Intel Corporation
    Inventors: Chia-Ching Lin, Sasikanth Manipatruni, Tanay Gosavi, Dmitri Nikonov, Benjamin Buford, Kaan Oguz, John J. Plombon, Ian A. Young
  • Patent number: 11295884
    Abstract: A perpendicular spin transfer torque memory (pSTTM) device incorporates a magnetic tunnel junction (MTJ) device having a free magnetic stack that includes a plurality of magnetic layers interleaved with a plurality of non-magnetic insert layers. The layers are arranged such that the topmost and bottommost layers are magnetic layers. The stacked design decreases the damping of the MTJ free magnetic stack, beneficially reducing the write current required to write to the pSTTM device. The stacked design further increases the interface anisotropy, thereby beneficially improving the stability of the pSTTM device. The non-magnetic interface layer may include tantalum, molybdenum, tungsten, hafnium, or iridium, or a binary alloy containing at least two of tantalum, molybdenum, tungsten hafnium, or iridium.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: April 5, 2022
    Assignee: Intel Corporation
    Inventors: Kaan Oguz, Kevin P. O'Brien, Brian S. Doyle, Charles C. Kuo, Mark L. Doczy
  • Publication number: 20220102483
    Abstract: Low leakage thin film capacitors for decoupling, power delivery, integrated circuits, related systems, and methods of fabrication are disclosed. Such thin film capacitors include a titanium dioxide dielectric and one or more noble metal oxide electrodes. Such thin film capacitors are suitable for high voltage applications and provide low current density leakage.
    Type: Application
    Filed: September 25, 2020
    Publication date: March 31, 2022
    Applicant: Intel Corporation
    Inventors: Thomas Sounart, Kaan Oguz, Neelam Prabhu Gaunkar, Aleksandar Aleksov, Henning Braunisch, I-Cheng Tung
  • Patent number: 11276730
    Abstract: A perpendicular spin orbit memory device includes a first electrode having a magnetic material and platinum and a material layer stack on a portion of the first electrode. The material layer stack includes a free magnet, a fixed magnet above the first electrode, a tunnel barrier between the free magnet and the fixed magnet and a second electrode coupled with the fixed magnet.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: March 15, 2022
    Assignee: Intel Corporation
    Inventors: Kevin O'Brien, Christopher Wiegand, Tofizur Rahman, Noriyuki Sato, Gary Allen, James Pellegren, Angeline Smith, Tanay Gosavi, Sasikanth Manipatruni, Kaan Oguz, Benjamin Buford, Ian Young
  • Patent number: 11264558
    Abstract: An apparatus is provided which comprises: a magnetic junction including: a stack of structures including: a first structure comprising a magnet with an unfixed perpendicular magnetic anisotropy (PMA) relative to an x-y plane of a device, wherein the first structure has a first dimension along the x-y plane and a second dimension in the z-plane, wherein the second dimension is substantially greater than the first dimension. The magnetic junction includes a second structure comprising one of a dielectric or metal; and a third structure comprising a magnet with fixed PMA, wherein the third structure has an anisotropy axis perpendicular to the plane of the device, and wherein the third structure is adjacent to the second structure such that the second structure is between the first and third structures; and an interconnect adjacent to the third structure, wherein the interconnect comprises a spin orbit material.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: March 1, 2022
    Assignee: Intel Corporation
    Inventors: Sasikanth Manipatruni, Kaan Oguz, Chia-Ching Lin, Christopher Wiegand, Tanay Gosavi, Ian Young
  • Patent number: 11257613
    Abstract: A perpendicular spin orbit torque (SOT) memory device includes an electrode having a spin orbit torque material, where the SOT material includes iridium and manganese and a perpendicular magnetic tunnel junction (pMTJ) device on a portion of the electrode. The pMTJ device includes a free magnet structure electrode, a fixed layer and a tunnel barrier between the free layer and the fixed layer and a SAF structure above the fixed layer. The Ir—Mn SOT material and the free magnet have an in-plane magnetic exchange bias.
    Type: Grant
    Filed: March 31, 2018
    Date of Patent: February 22, 2022
    Assignee: Intel Corporation
    Inventors: Kaan Oguz, Tanay Gosavi, Sasikanth Manipatruni, Charles Kuo, Mark Doczy, Kevin O'Brien
  • Patent number: 11251365
    Abstract: An apparatus is provided which comprises: a magnetic junction having a magnet with a first magnetization; an interconnect adjacent to the magnetic junction, wherein the interconnect comprises an antiferromagnetic (AFM) material which is doped with a doping material (Pt, Ni, Co, or Cr) and a structure adjacent to the interconnect such that the magnetic junction and the structure are on opposite surfaces of the interconnect, wherein the structure comprises a magnet with a second magnetization substantially different from the first magnetization.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: February 15, 2022
    Assignee: Intel Corporation
    Inventors: Tanay Gosavi, Sasikanth Manipatruni, Kaan Oguz, Ian Young, Kevin O'Brien, Gary Allen, Noriyuki Sato