Patents by Inventor Kaan Oguz

Kaan Oguz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200343301
    Abstract: A memory apparatus includes a first electrode having a spin orbit material. The memory apparatus further includes a first memory device on a portion of the first electrode and a first dielectric adjacent to a sidewall of the first memory device. The memory apparatus further includes a second memory device on a portion of the first electrode and a second dielectric adjacent to a sidewall of the second memory device. A second electrode is on and in contact with a portion of the first electrode, where the second electrode is between the first memory device and the second memory device. The second electrode has a lower electrical resistance than an electrical resistance of the first electrode. The memory apparatus further includes a first interconnect structure and a second interconnect, each coupled with the first electrode.
    Type: Application
    Filed: April 26, 2019
    Publication date: October 29, 2020
    Inventors: Benjamin Buford, Angeline Smith, Noriyuki Sato, Tanay Gosavi, Kaan Oguz, Christopher Wiegand, Kevin O'Brien, Tofizur Rahman, Gary Allen, Sasikanth Manipatruni, Emily Walker
  • Patent number: 10804460
    Abstract: Material layer stack structures to provide a magnetic tunnel junction (MTJ) having improved perpendicular magnetic anisotropy (PMA) characteristics. In an embodiment, a free magnetic layer of the material layer stack is disposed between a tunnel barrier layer and a cap layer of magnesium oxide (Mg). The free magnetic layer includes a Cobalt-Iron-Boron (CoFeB) body substantially comprised of a combination of Cobalt atoms, Iron atoms and Boron atoms. A first Boron mass fraction of the CoFeB body is equal to or more than 25% (e.g., equal to or more than 27%) in a first region which adjoins an interface of the free magnetic layer with the tunnel barrier layer. In another embodiment, the first Boron mass fraction is more than a second Boron mass fraction in a second region of the CoFeB body which adjoins an interface of the free magnetic layer with the cap layer.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: October 13, 2020
    Assignee: Intel Corporation
    Inventors: MD Tofizur Rahman, Christopher J. Wiegand, Brian Maertz, Daniel G. Ouellette, Kevin P. O'Brien, Kaan Oguz, Brian S. Doyle, Mark L. Doczy, Daniel B. Bergstrom, Justin S. Brockman, Oleg Golonzka, Tahir Ghani
  • Publication number: 20200313075
    Abstract: A memory device includes a first electrode including a spin-orbit material, a magnetic junction on a portion of the first electrode and a first structure including a dielectric on a portion of the first electrode. The first structure has a first sidewall and a second sidewall opposite to the first sidewall. The memory device further includes a second structure on a portion of the first electrode, where the second structure has a sidewall adjacent to the second sidewall of the first structure. The memory device further includes a first conductive interconnect above and coupled with each of the magnetic junction and the second structure and a second conductive interconnect below and coupled with the first electrode, where the second conductive interconnect is laterally distant from the magnetic junction and the second structure.
    Type: Application
    Filed: March 27, 2019
    Publication date: October 1, 2020
    Applicant: Intel Corporation
    Inventors: Noriyuki SATO, Angeline SMITH, Tanay GOSAVI, Sasikanth MANIPATRUNI, Kaan OGUZ, Kevin O'Brien, Benjamin BUFORD, Tofizur RAHMAN, Rohan PATIL, Nafees KABIR, Michael CHRISTENSON, Ian YOUNG, Hui Jae YOO, Christopher WIEGAND
  • Publication number: 20200313076
    Abstract: A spin orbit memory device includes a first electrode including a beta-phase material. The spin orbit memory device further includes a material layer stack on a portion of the first electrode. The material layer stack includes a first layer on the first electrode, where the first layer includes a bcc material such as molybdenum. The material layer stack further includes layers of a perpendicular magnetic tunnel junction (pMTJ) device on the first layer. The pMTJ device includes a free magnet structure on the first layer, where the free magnet structure includes a first magnet and a second magnet on the first magnet. The pMTJ device further includes a fixed magnet above the free magnet structure and a tunnel barrier layer between the magnet structure and the third magnet and a second electrode coupled with the second magnet.
    Type: Application
    Filed: March 27, 2019
    Publication date: October 1, 2020
    Applicant: Intel Corporation
    Inventors: Kaan OGUZ, Christopher WIEGAND, Noriyuki SATO, Angeline SMITH, Tanay GOSAVI
  • Publication number: 20200312908
    Abstract: A spin orbit memory device includes a material layer stack on a spin orbit electrode. The material layer stack includes a magnetic tunnel junction (MTJ) and a synthetic antiferromagnetic (SAF) structure on the MTJ. The SAF structure includes a first magnet structure and a second magnet structure separated by an antiferromagnetic coupling layer. The first magnet structure includes a first magnet and a second magnet separated by a single layer of a non-magnetic material such as platinum. The second magnet structure includes a stack of bilayers, where each bilayer includes a layer of platinum on a layer of a magnetic material such.
    Type: Application
    Filed: March 27, 2019
    Publication date: October 1, 2020
    Applicant: Intel Corporation
    Inventors: Kaan OGUZ, Christopher WIEGAND, Noriyuki SATO, Angeline SMITH, Tanay GOSAVI
  • Patent number: 10770651
    Abstract: A material layer stack for a pSTTM device includes a fixed magnetic layer, a tunnel barrier disposed above the fixed magnetic layer and a free layer disposed on the tunnel barrier. The free layer further includes a stack of bilayers where an uppermost bilayer is capped by a magnetic layer including iron and where each of the bilayers in the free layer includes a non-magnetic layer such as Tungsten, Molybdenum disposed on the magnetic layer. In an embodiment, the non-magnetic layers have a combined thickness that is less than 15% of a combined thickness of the magnetic layers in the stack of bilayers. A stack of bilayers including non-magnetic layers in the free layer can reduce the saturation magnetization of the material layer stack for the pSTTM device and subsequently increase the perpendicular magnetic anisotropy.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: September 8, 2020
    Assignee: Intel Corporation
    Inventors: MD Tofizur Rahman, Christopher J. Wiegand, Kaan Oguz, Daniel G. Ouellette, Brian Maertz, Kevin P. O'Brien, Mark L. Doczy, Brian S. Doyle, Oleg Golonzka, Tahir Ghani
  • Patent number: 10732217
    Abstract: Techniques are disclosed for carrying out ferromagnetic resonance (FMR) testing on whole wafers populated with one or more buried magnetic layers. The techniques can be used to verify or troubleshoot processes for forming the buried magnetic layers, without requiring the wafer to be broken. The techniques can also be used to distinguish one magnetic layer from others in the same stack, based on a unique frequency response of that layer. One example methodology includes moving a wafer proximate to a waveguide (within 500 microns, but without shorting), energizing a DC magnetic field near the target measurement point, applying an RF input signal through the waveguide, collecting resonance spectra of the frequency response of the waveguide, and decomposing the resonance spectra into magnetic properties of the target layer. One or both of the DC magnetic field and RF input signal can be swept to generate a robust set of resonance spectra.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: August 4, 2020
    Assignee: Intel Corporation
    Inventors: Kevin P. O'Brien, Kaan Oguz, Christopher J. Wiegand, Mark L. Doczy, Brian S. Doyle, MD Tofizur Rahman, Oleg Golonzka, Tahir Ghani
  • Publication number: 20200227104
    Abstract: A perpendicular spin orbit torque memory device includes a first electrode having tungsten and at least one of nitrogen or oxygen and a material layer stack on a portion of the first electrode. The material layer stack includes a free magnet, a fixed magnet above the first magnet, a tunnel barrier between the free magnet and the fixed magnet and a second electrode coupled with the fixed magnet.
    Type: Application
    Filed: January 11, 2019
    Publication date: July 16, 2020
    Applicant: Intel Corporation
    Inventors: Tofizur Rahman, James Pellegren, Angeline Smith, Christopher Wiegand, Noriyuki Sato, Tanay Gosavi, Sasikanth Manipatruni, Kaan Oguz, Kevin O'Brien, Benjamin Buford, Ian Young
  • Publication number: 20200227474
    Abstract: A perpendicular spin orbit memory device includes a first electrode having a magnetic material and platinum and a material layer stack on a portion of the first electrode. The material layer stack includes a free magnet, a fixed magnet above the first electrode, a tunnel barrier between the free magnet and the fixed magnet and a second electrode coupled with the fixed magnet.
    Type: Application
    Filed: January 11, 2019
    Publication date: July 16, 2020
    Inventors: Kevin O'Brien, Christopher Wiegand, Tofizur Rahman, Noriyuki Sato, Gary Allen, James Pellegren, Angeline Smith, Tanay Gosavi, Sasikanth Manipatruni, Kaan Oguz, Benjamin Buford, Ian Young
  • Publication number: 20200227105
    Abstract: A memory device includes a spin orbit electrode structure having a dielectric structure including a first sidewall, a second sidewall opposite to the first sidewall, a top surface. The spin orbit electrode structure further includes an electrode having a spin orbit material adjacent to the dielectric structure, where the electrode has a first electrode portion on the top surface, a second electrode portion adjacent to the first sidewall and a third electrode portion adjacent to the second sidewall. The first electrode portion, the second electrode portion and the third electrode portion are contiguous. The spin orbit electrode structure further includes a conductive interconnect in contact with the second electrode portion or the third electrode portion. The memory device further includes a magnetic junction device on a portion of the top surface of the first electrode portion.
    Type: Application
    Filed: January 11, 2019
    Publication date: July 16, 2020
    Applicant: Intel Corporation
    Inventors: Tanay GOSAVI, Sasikanth MANIPATRUNI, Chia-Ching LIN, Kaan OGUZ, Ian YOUNG
  • Patent number: 10707409
    Abstract: Techniques are disclosed for fabricating a self-aligned spin-transfer torque memory (STTM) device with a dot-contacted free magnetic layer. In some embodiments, the disclosed STTM device includes a first dielectric spacer covering sidewalls of an electrically conductive hardmask layer that is patterned to provide an electronic contact for the STTM's free magnetic layer. The hardmask contact can be narrower than the free magnetic layer. The first dielectric spacer can be utilized in patterning the STTM's fixed magnetic layer. In some embodiments, the STTM further includes an optional second dielectric spacer covering sidewalls of its free magnetic layer. The second dielectric spacer can be utilized in patterning the STTM's fixed magnetic layer and may serve, at least in part, to protect the sidewalls of the free magnetic layer from redepositing of etch byproducts during such patterning, thereby preventing electrical shorting between the fixed magnetic layer and the free magnetic layer.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: July 7, 2020
    Assignee: Intel Corporation
    Inventors: Charles C. Kuo, Kaan Oguz, Brian S. Doyle, Mark L. Doczy, David L. Kencke, Satyarth Suri, Robert S. Chau
  • Publication number: 20200212291
    Abstract: A memory device comprises an interconnect comprises a spin orbit coupling (SOC) material. A free magnetic layer is on the interconnect, a barrier material is over the free magnetic layer and a fixed magnetic layer is over the barrier material, wherein the free magnetic layer comprises an antiferromagnet. In another embodiment, memory device comprises a spin orbit coupling (SOC) interconnect and an antiferromagnet (AFM) free magnetic layer is on the interconnect. A ferromagnetic magnetic tunnel junction (MTJ) device is on the AFM free magnetic layer, wherein the ferromagnetic MTJ comprises a free magnet layer, a fixed magnet layer, and a barrier material between the free magnet layer and the fixed magnet layer.
    Type: Application
    Filed: December 28, 2018
    Publication date: July 2, 2020
    Inventors: Chia-Ching LIN, Sasikanth MANIPATRUNI, Tanay GOSAVI, Dmitri NIKONOV, Kaan OGUZ, Ian A. YOUNG
  • Patent number: 10636960
    Abstract: MTJ material stacks with a laterally strained free magnetic layer, STTM devices employing such stacks, and computing platforms employing such STTM devices. In some embodiments, perpendicular pMTJ material stacks included free magnetic layers that are compressively strained laterally by a surrounding material, which increases coercive field strength for a more stable device. In some embodiments, a pMTJ material stack is encased in a compressive-stressed material. In some further embodiments, a pMTJ material stack is encased first in a dielectric shell, permitting a conductive material to be deposited over the shell as the compressive-stressed, strain-inducing material layer.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: April 28, 2020
    Assignee: Intel Corporation
    Inventors: Prashanth P. Madras, MD Tofizur Rahman, Christopher J. Wiegand, Brian Maertz, Oleg Golonzka, Kevin P. O'Brien, Mark L. Doczy, Brian S. Doyle, Tahir Ghani, Kaan Oguz
  • Publication number: 20200105940
    Abstract: Ferroelectric field effect transistors (FeFETs) having band-engineered interface layers are described. In an example, an integrated circuit structure includes a semiconductor channel layer above a substrate. A metal oxide material is on the semiconductor channel layer, the metal oxide material having no net dipole. A ferroelectric oxide material is on the metal oxide material. A gate electrode is on the ferroelectric oxide material, the gate electrode having a first side and a second side opposite the first side. A first source/drain region is at the first side of the gate electrode, and a second source/drain region is at the second side of the gate electrode.
    Type: Application
    Filed: June 20, 2017
    Publication date: April 2, 2020
    Inventors: Prashant MAJHI, Brian S. DOYLE, Kevin P. O'BRIEN, Abhishek A. SHARMA, Elijah V. KARPOV, Kaan OGUZ
  • Publication number: 20200083427
    Abstract: An apparatus is provided which comprises: a magnetic junction including: a stack of structures including: a first structure comprising a magnet with an unfixed perpendicular magnetic anisotropy (PMA) relative to an x-y plane of a device, wherein the first structure has a first dimension along the x-y plane and a second dimension in the z-plane, wherein the second dimension is substantially greater than the first dimension. The magnetic junction includes a second structure comprising one of a dielectric or metal; and a third structure comprising a magnet with fixed PMA, wherein the third structure has an anisotropy axis perpendicular to the plane of the device, and wherein the third structure is adjacent to the second structure such that the second structure is between the first and third structures; and an interconnect adjacent to the third structure, wherein the interconnect comprises a spin orbit material.
    Type: Application
    Filed: September 11, 2018
    Publication date: March 12, 2020
    Applicant: Intel Corporation
    Inventors: Sasikanth MANIPATRUNI, Kaan OGUZ, Chia-Ching LIN, Christopher WIEGAND, Tanay GOSAVI, Ian YOUNG
  • Patent number: 10580975
    Abstract: Technologies for manufacturing spin transfer torque memory (STTM) elements are disclosed. In some embodiments, the technologies include methods for removing a re-deposited layer and/or interrupting the electrical continuity of a re-deposited layer that may form on one or more sidewalls of an STTM element during its formation. Devices and systems including such STTM elements are also described.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: March 3, 2020
    Assignee: Intel Corporation
    Inventors: Mark L. Doczy, Brian S. Doyle, Charles C. Kuo, Kaan Oguz, Kevin P. O'Brien, Satyarth Suri, Tejaswi K. Indukuri
  • Patent number: 10580973
    Abstract: Techniques are disclosed for forming integrated circuit structures including a magnetic tunnel junction (MTJ), such as spin-transfer torque memory (STTM) devices, having magnetic contacts. The techniques include incorporating an additional magnetic layer (e.g., a layer that is similar or identical to that of the magnetic contact layer) such that the additional magnetic layer is coupled antiferromagnetically (or in a substantially antiparallel manner). The additional magnetic layer can help balance the magnetic field of the magnetic contact layer to limit parasitic fringing fields that would otherwise be caused by the magnetic contact layer. The additional magnetic layer may be antiferromagnetically coupled to the magnetic contact layer by, for example, including a nonmagnetic spacer layer between the two magnetic layers, thereby creating a synthetic antiferromagnet (SAF).
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: March 3, 2020
    Assignee: INTEL CORPORATION
    Inventors: Brian S. Doyle, Kaan Oguz, Charles C. Kuo, Mark L. Doczy, Satyarth Suri, David L. Kencke, Robert S. Chau, Roksana Golizadeh Mojarad
  • Patent number: 10580970
    Abstract: MTJ material stacks, pSTTM devices employing such stacks, and computing platforms employing such STTM devices. In some embodiments, perpendicular MTJ material stacks with free magnetic layers are magnetically coupled through a metal material layer for improved stability and low damping. In some advantageous embodiments, layers of a free magnetic material stack are magnetically coupled through a coupling layer of a metal comprising at least molybdenum (Mo). The Mo may be in pure form or alloyed with other constituents.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: March 3, 2020
    Assignee: Intel Corporation
    Inventors: Kaan Oguz, Kevin P. O'Brien, Christopher J. Wiegand, Tofizur Rahman, Brian S. Doyle, Mark L. Doczy, Oleg Golonzka, Tahir Ghani, Justin S. Brockman
  • Publication number: 20200051724
    Abstract: An embodiment includes an apparatus comprising: a substrate; a magnetic tunnel junction (MTJ), on the substrate, comprising a fixed layer, a free layer, and a dielectric layer between the fixed and free layers; and a first synthetic anti-ferromagnetic (SAF) layer, a second SAF layer, and an intermediate layer, which includes a non-magnetic metal, between the first and second SAF layers; wherein the first SAF layer includes a Heusler alloy. Other embodiments are described herein.
    Type: Application
    Filed: June 26, 2015
    Publication date: February 13, 2020
    Inventors: Brian S. Doyle, Kaan Oguz, Kevin P. O'Brien, David L. Kencke, Charles C. Kuo, Mark L. Doczy, Satyarth Suri, Robert S. Chau
  • Patent number: 10559744
    Abstract: An apparatus including an array of memory cells arranged in a grid defined by word lines and bit lines in a generally orthogonal orientation relative to one another, a memory cell including a resistive memory component and an access transistor, wherein the access transistor includes a diffusion region disposed at an acute angle relative to an associated word line. A method including etching a substrate to form a plurality of fins each including a body having a length dimension including a plurality of first junction regions and a plurality of second junction regions that are generally parallel to one another and offset by angled channel regions displacing in the length dimension an end of a first junction region from the beginning of a second junction region; removing the spacer material; and introducing a gate electrode on the channel region of each of the plurality of fins.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: February 11, 2020
    Assignee: Intel Corporation
    Inventors: Brian Maertz, Christopher J. Wiegand, Daniel G. Oeullette, Md Tofizur Rahman, Oleg Golonzka, Justin S. Brockman, Tahir Ghani, Brian S. Doyle, Kevin P. O'Brien, Mark L. Doczy, Kaan Oguz