Patents by Inventor Karl A. Littau

Karl A. Littau has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150174811
    Abstract: A method for depositing a structure comprising interdigitated materials includes merging flows of at least two materials in a first direction into a first combined flow, dividing the first combined flow in a second direction to produce at least two separate flows, wherein the second direction is perpendicular to the first direction, and merging the two separate flows into a second combined flow.
    Type: Application
    Filed: March 6, 2015
    Publication date: June 25, 2015
    Inventors: DAVID K. FORK, KARL LITTAU
  • Patent number: 9004001
    Abstract: A co-extrusion device has at least one first inlet port to receive a first material, at least one second inlet port to receive a second material, a first combining channel arranged to receive the first material and the second material and combine the first and second materials into a first combined flow flowing in a first direction. a splitter channel arranged to receive the first combined flow and to split the first combined flow into at least two split flows in a second direction at least partially orthogonal to the first direction, wherein each split flow consists of the first and second materials, and a second combining channel arranged to receive the split flows and combine the split flows into a second combined flow in the first direction, and at least one exit orifice arranged to allow the materials to exit the device as a single flow.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: April 14, 2015
    Assignee: Palo Alto Research Center Incorporated
    Inventors: David K. Fork, Karl Littau
  • Patent number: 8784632
    Abstract: An apparatus for performing electrodialysis at pressures greater than or equal to the ambient pressure is described. The apparatus includes an electrodialysis membrane stack and housing. The electrodialysis membrane stack includes at least one electrodialysis cell. The electrodialysis apparatus includes electrodes that apply voltage across the electrodialysis stack. The housing pressurizes the electrodialysis stack at a stack pressure. The housing includes a cell chamber that receives the electrodialysis stack, the cell chamber including at least one pressurization port communicating with the cell chamber such that a portion of electrode solution is transmittable into a region of the cell chamber outside the electrodialysis stack.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: July 22, 2014
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Matthew D. Eisaman, Karl A. Littau, Daniel Larner
  • Patent number: 8778156
    Abstract: A process for producing a gas using an electrodialysis apparatus includes flowing at least two solutions and an electrode solution into the apparatus, pressurizing the apparatus at a stack pressure, applying a voltage to the apparatus's electrodialysis stack so a dissolved gas is generated in the second solution, flowing the second solution out of the apparatus, regenerating the gas out of the second solution, and collecting the gas. A process for generating a product, like a gas, liquid, or supercritical fluid, using an electrodialysis apparatus includes flowing at least two solutions and an electrode solution into the apparatus, adjusting the temperature and pressure so the product will be generated from the second solution, applying a voltage to the electrodialysis stack of the apparatus so that the product is generated in the second solution, flowing the second solution out of the apparatus, and regenerating the product from the second solution.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: July 15, 2014
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Matthew D. Eisaman, Karl A. Littau
  • Patent number: 8535502
    Abstract: A system and method for recovery of CO2 includes an aqueous capture device having a capture solution. The aqueous capture device is arranged to receive gas and to capture components from the gas including at least CO2. An electrodialysis unit in operative connection with the capture device performs an electrodialysis operation on the capture solution including at least the CO2, wherein a CO2 rich process stream and a regenerated capture solution are generated from the capture solution including at least the CO2. The CO2 rich process stream is a pressurized process stream at a pressure which maintains the CO2 substantially within the CO2 rich process stream, while in the electrodialysis unit. In another alternative, at least the pH of the capture stream is controlled.
    Type: Grant
    Filed: September 8, 2008
    Date of Patent: September 17, 2013
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Karl A. Littau, Francisco E. Torres
  • Patent number: 8389165
    Abstract: A method of manufacturing a fuel cell includes applying a sacrificial material periodically to a surface of an anode substrate, wherein at least some areas of the anode substrate have no sacrificial material. A first gas diffusion layer is applied to the sacrificial material, and a first catalyst material is applied to the first gas diffusion layer. An electrolyte material is applied to the anode substrate and the first gas diffusion layer, with the catalyst material, wherein a first surface of the electrolyte material is in operative association with the anode substrate, and the first gas diffusion layer. A second catalyst material is applied to the second surface of the electrolyte material. A second gas diffusion layer is applied to the electrolyte material on a second surface of the electrolyte material, with the catalyst material, wherein a first surface of the second gas diffusion layer is in contact with the second surface of the electrolyte material with the catalyst material.
    Type: Grant
    Filed: November 29, 2008
    Date of Patent: March 5, 2013
    Assignee: Palo Alto Research Center Incorporated
    Inventor: Karl A. Littau
  • Publication number: 20130008792
    Abstract: A method comprises flowing process solution and electrode solution into a BPMED apparatus, applying a voltage such that the process solution is acidified and basified and dissolved CO2 is generated, flowing the process solution out of the apparatus, and desorbing CO2 out of the process solution. A method for desorbing CO2 from an ocean comprises flowing seawater and electrode solution into a BPMED apparatus, applying a voltage such that dissolved CO2 is generated, flowing the seawater out of the apparatus, and desorbing CO2 out of the seawater. A method for producing a desalted solution and CO2 gas comprises flowing process solution and electrode solution into a BPMED apparatus that includes one or more three-compartment cells, applying a voltage such that the process solution is acidified, basified, and desalted, flowing the process solution out of the apparatus, and desorbing CO2 out of the process solution.
    Type: Application
    Filed: July 6, 2011
    Publication date: January 10, 2013
    Applicant: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Matthew D. Eisaman, Karl Littau
  • Patent number: 8210661
    Abstract: A side-firing printhead comprises a stack that includes a plurality of slices, wherein each slice includes a PCB trigger layer and a diaphragm layer, the PCB trigger layer controls the flow of ink from the diaphragm layer, a first side of the diaphragm layer includes at least one cavity that delivers ink via one or more aperture braces. An aperture plate is coupled to one side of the stack to interface to the diaphragm layers contained therein, wherein the aperture plate contains a plurality of apertures that are located at each aperture brace. A first bracket is disposed on the top of the stack and a second bracket is disposed on the bottom of the stack, wherein at least one fastener couples the second bracket to the first bracket such that a predetermined amount of pressure is applied to the stack.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: July 3, 2012
    Assignee: Palo Alto Research Center, Incorporated
    Inventors: Patrick C. P. Cheung, Karl A. Littau, Michael Y. Young, Steven A. Buhler
  • Publication number: 20120156364
    Abstract: A co-extrusion device has at least one first inlet port to receive a first material, at least one second inlet port to receive a second material, a first combining channel arranged to receive the first material and the second material and combine the first and second materials into a first combined flow flowing in a first direction. a splitter channel arranged to receive the first combined flow and to split the first combined flow into at least two split flows in a second direction at least partially orthogonal to the first direction, wherein each split flow consists of the first and second materials, and a second combining channel arranged to receive the split flows and combine the split flows into a second combined flow in the first direction, and at least one exit orifice arranged to allow the materials to exit the device as a single flow.
    Type: Application
    Filed: December 17, 2010
    Publication date: June 21, 2012
    Applicant: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: David K. Fork, Karl Littau
  • Publication number: 20120152747
    Abstract: An apparatus for performing electrodialysis at pressures greater than or equal to the ambient pressure is described. The apparatus includes an electrodialysis membrane stack and housing. The electrodialysis membrane stack includes at least one electrodialysis cell. The electrodialysis apparatus includes electrodes that apply voltage across the electrodialysis stack. The housing pressurizes the electrodialysis stack at a stack pressure. The housing includes a cell chamber that receives the electrodialysis stack, the cell chamber including at least one pressurization port communicating with the cell chamber such that a portion of electrode solution is transmittable into a region of the cell chamber outside the electrodialysis stack.
    Type: Application
    Filed: December 15, 2010
    Publication date: June 21, 2012
    Applicant: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Matthew D. Eisaman, Karl A. Littau, Daniel Larner
  • Publication number: 20120152744
    Abstract: A process for producing a gas using an electrodialysis apparatus includes flowing at least two solutions and an electrode solution into the apparatus, pressurizing the apparatus at a stack pressure, applying a voltage to the apparatus's electrodialysis stack so a dissolved gas is generated in the second solution, flowing the second solution out of the apparatus, regenerating the gas out of the second solution, and collecting the gas. A process for generating a product, like a gas, liquid, or supercritical fluid, using an electrodialysis apparatus includes flowing at least two solutions and an electrode solution into the apparatus, adjusting the temperature and pressure so the product will be generated from the second solution, applying a voltage to the electrodialysis stack of the apparatus so that the product is generated in the second solution, flowing the second solution out of the apparatus, and regenerating the product from the second solution.
    Type: Application
    Filed: December 15, 2010
    Publication date: June 21, 2012
    Applicant: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Matthew D. Eisaman, Karl A. Littau
  • Publication number: 20120153211
    Abstract: An electrode structure has a layer of at least two interdigitated materials, a first material being an electrically conductive material and a second material being an ionically conductive material, the materials residing co-planarly on a membrane in fluid form, at least one of the interdigitated materials forming a feature having an aspect ratio greater than one.
    Type: Application
    Filed: December 17, 2010
    Publication date: June 21, 2012
    Applicant: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: David K. Fork, Karl Littau
  • Patent number: 8156725
    Abstract: A compressed air energy storage system and method of capturing CO2 during compressed air energy storage the system and method including a gas inlet pipe, at least one air compressor stage attached to the gas inlet pipe and adapted for compression of a gas, a heat transfer system to cool the gas during or after compression, the heat being recycled throughout the system, at least one absorption bed for separating CO2 from the compressed gas attached to the heat transfer system, at least one compressed gas reservoir having an inlet and an outlet, the reservoir attached at its inlet to the absorption bed, at least one preheater stage attached to the outlet of the compressed gas reservoir for heating a compressed gas after storage in the compressed gas reservoir, and at least one gas expander attached to the preheater stage and adapted for the expansion of the compressed gas.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: April 17, 2012
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Karl A. Littau, Raphael Stumpp
  • Patent number: 8075789
    Abstract: A method and apparatus for cleaning a chamber in a substrate processing system having less reactivity with the chamber walls and the components contained therein. The method includes mixing a diluent gas with a flow of radicals produced by a plasma remotely disposed with respect to the chamber, at a point located between a plasma applicator and the chamber. The apparatus includes a fluid manifold having multiple inlets and an outlet with the outlet being coupled to an intake port of the chamber. One of the inlets are in fluid communication with the plasma applicator, with the remaining inlets being in fluid communication with a supply of the diluent gas. In this fashion, the diluent gas flow and the flow of reactive radicals mix when traveling between the inlets and the outlet to form a gas-radical mixture egressing from the outlet and traversing through the intake port.
    Type: Grant
    Filed: July 11, 1997
    Date of Patent: December 13, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Karl A. Littau, Chiliang L. Chen, Anand Vasudev
  • Patent number: 8029599
    Abstract: A layered structure can be formed having immobilized or segregated pH buffering groups that can be used to separate carbon dioxide or other gases. The pH buffering groups can be immobilized within a matrix, confined within a gel, or segregated by a semi-permeable membrane. The pH buffering groups can be configured to increase the efficiency of the system by maintaining a desirable pH profile within the cell and to permit the flow of the carbon-containing ions within the system while controlling diffusion of protons and/or hydroxyl ions.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: October 4, 2011
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Karl A. Littau, Francisco E. Torres
  • Patent number: 8023866
    Abstract: A marking apparatus including a traveling wave grid toner transport circuit structure for transporting powdered toner along a transport surface, and electromechanical elements for selectively enabling toner patches to be projected to an output medium by a projecting electric field.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: September 20, 2011
    Assignee: Xerox Corporation
    Inventors: Meng H Lean, Shu Chang, Baomin Xu, Karl A Littau, David G Duff
  • Publication number: 20110141206
    Abstract: A side-firing printhead comprises a stack that includes a plurality of slices, wherein each slice includes a PCB trigger layer and a diaphragm layer, the PCB trigger layer controls the flow of ink from the diaphragm layer, a first side of the diaphragm layer includes at least one cavity that delivers ink via one or more aperture braces. An aperture plate is coupled to one side of the stack to interface to the diaphragm layers contained therein, wherein the aperture plate contains a plurality of apertures that are located at each aperture brace. A first bracket is disposed on the top of the stack and a second bracket is disposed on the bottom of the stack, wherein at least one fastener couples the second bracket to the first bracket such that a predetermined amount of pressure is applied to the stack.
    Type: Application
    Filed: December 16, 2009
    Publication date: June 16, 2011
    Applicant: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Patrick C. P. Cheung, Karl A. Littau, Michael Y. Young, Steven A. Buhler
  • Patent number: 7901130
    Abstract: The presently described embodiments are directed to a calibration method and system for thin film thermistors that are locally heated with integrated thin film heaters. Initially, print head temperature is either measured or referenced. Then, transient thermistor resistances are measured and used to determine the thermistor resistance at a higher temperature. Notably, this calibration method is advantageously implemented as a step of an existing process without having to expose the print heads to operating temperatures. In some implementations of the presently described embodiments, trimming of the thermistors may be required once calibrated.
    Type: Grant
    Filed: July 6, 2009
    Date of Patent: March 8, 2011
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Scott Jong Ho Limb, Michael Yu Tak Young, Karl A. Littau
  • Patent number: 7851226
    Abstract: A method and apparatus for measuring the presence or absence of reaction between a first and second material of interest by measuring osmotic pressure changes in a reaction cell. The reaction cell is capable of measuring the small changes in pressure that occur due to osmotic pressure shifts during a catalytic or binding reaction at species concentrations down to approximately 10?7 M.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: December 14, 2010
    Assignee: Xerox Corporation
    Inventors: Francisco E. Torres, Karl Littau, Eric Shrader
  • Patent number: 7833808
    Abstract: Methods for forming a photovoltaic cell electrode structure, wherein the photovoltaic cell includes a semiconductor substrate having a passivation layer thereon, includes providing a plurality of contact openings through the passivation layer to the semiconductor substrate, selectively plating a contact metal into the plurality of contact openings to deposit the contact metal, depositing a metal containing material on the deposited contact metal, and firing the deposited contact metal and the deposited metal containing material. The metal containing material may include a paste containing a silver or silver alloy along with a glass frit and is substantially free to completely free of lead. The methods may also use light activation of the passivation layer or use seed layers to assist in the plating.
    Type: Grant
    Filed: March 24, 2008
    Date of Patent: November 16, 2010
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Baomin Xu, Karl A. Littau, David K. Fork